5th Cyprus Sustainable Mobility and Intelligent Transport Conference 16-17 May 2017

City Logistics in Sustainable Planning

Prof. Seraphim KAPROS

Department of Shipping, Trade and Transport University of the Aegean

City Logistics in Sustainable Planning

From Urban Goods Movement to City Logistics...

Urban freight: the "hidden" face of transport system

A city generates about:

> 0.1 delivery or pick-up per person per day

> 1 delivery or pick-up per job per week

> 300 to 400 truck trips per 1000 people per day, and

> 30 to 50 tons of goods per person per year.

Urban freight

□ Urban freight represents:

- >10% to 15% of vehicle-km travelled in city streets
- > 2% to 5% of the employed urban workforce.

□ The "real estate" of Logistics:

> 3% to 5% of urban land is devoted to freight transport and logistics.

Urban freight

A city is not only a **destination**, but also an **origin** of freight movement:

- >20% to 25% of all truck-km in urban areas are outgoing freight,
- ≻ 40% to 50% is incoming freight and
- >25% to 40% is originated from and is delivered within the city.

Urban freight within freight chains

- More than 50% of freight traffic (in tones) relates to distances less than 50 km
- 2 out of 3 orders (independently on the size) deal with urban freight transport
- 2/3 of total transport cost refers to deliveries within the urban area

European freight traffic per distance class

Department of Shipping, Trade and Transport University of the Aegean

Urban freight in the future: driving forces

- > 75% 80% of population lives in urban areas.
- Urban regions will continue to embrace multiple functions:
 - working
 - living
 - leisure
 - shopping
- Need for sustainable development and preservation of quality of life.
- Major generators of freight flows:
 - Consumption of goods importation from other regions;
 - Production of goods exportation to other regions;
 - Generator of waste.

Urban freight in the future: driving forces

- Changes in societal values, culture and lifestyles
- Relocation of production (Asia, Eastern Europe, etc).
- Changes in the Logistics and Supply Chains
 - Increase of distance between production and consumption points
 - Just in Time
 - Decrease of load factor (?)
 - Reverse logistics
- Emerging of new schemes
 - E-commerce
 - Home delivery
 - Social Networks (increasing power of buyers)
- Major technological developments (TV, Internet, Mobile phones, etc)

Urban freight in the future

- According to EC long-term forecast, freight transport will grow up to 80% by 2050 (EC, 2012).
- Estimates put logistics at 12% of the total cost in the manufacturing sector and at more than 20% in the retail sector (EC, 2007).
- Urban freight is expected to increase.

Urban goods movement refers to a complex environment: difficult to organize, difficult to modernize

City Logistics: a tool to optimize... "last mile" logistics

- > An interdisciplinary approach
- Relevant concepts: sustainability, green transport, green logistics, "decoupling traffic and economic growth", reengineering, Intermodality.
- Large variety of actions and plans

Through a "transport system" approach, interventions needed at the levels of:

- Infrastructure
- Transport means
- Equipment and (new) Technologies
- Traffic flow organization
- Land use organization (land uses generate traffic)

Technical approach

<u>Objective</u>:

- Reduction of the total nb of vehicle-kilometers travelled to satisfy the demand
- Reduction of emissions

Instruments:

- Modal shift policies
- Promotion of New technologies
- Promotion of alternative fuels
- Traffic management
- Alternative Land Use planning

Best Practices in City Logistics

According to the European experience, three (3) main interventions, coordinated:

- Dedicated infrastructure for city logistics (e.g. Distribution Centers, Urban Consolidation Centers)
- Traffic restrictions traffic reorganization (e.g. Low Emissions Zones)
- Alternative vehicle combustion technologies (electric vehicles, CNG etc) or non motorized transport

Example 1: Distribution Centers

- ... a specific category of Logistics Centers, mainly focusing on the preparation of "last mile" delivery operations.
- They are "Interfaces" between long distance and short distance (urban) transport operations.
- They allow reduction of externalities through optimized flows of smaller trucks entering the city.
- Local authorities tried to implement Distribution Centers over the last two decades.
- The major potential beneficiaries of Distribution Center are independent and small retailers as well as operators making small multi-drop deliveries especially in areas in which constraints on delivery conditions exists (e.g. restricting regulations or congestion).

Example 1: Distribution Centers

One of the most exemplary Distribution Centers in Europe is **Binnenstadservice (BSS)**, a Distribution Center **at Nijmegen (Netherlands)**.

<u>The mission</u>: to provide logistical services to local inner city stores, regional consumers, carriers and local government.

<u>The objective</u>: to minimise the number of trips through the city center.

Business plan:

- Retailers do not have to pay for BSS' basic service, i.e. receiving goods and delivering these goods to the store at the time the store-owner likes.
- BBS' viability is based on extra services related to storage, home deliveries, return logistics etc

<u>History</u>:

- BSS started with only twenty clients in April 2008. The number of connected stores increased to 98 after one year, and it is continuously increasing as does the delivered volume.
- Since April 2009 it operates without financial governmental support.

Example 1: Distribution Centers

Example 2: electric vehicles Concorde Square

- Development of an urban warehouse (800m2), in an underground parking lot, under the Concorde Square
- □ Transport company: Chronopost
- Services: Urban delivery
- □ Goods: Small packages
- Electric vehicles

Department of Shipping, Trade and Transport University of the Aegean

Example 2: electric vehicles Concorde Square

Without Concorde ULS

With Concorde ULS

- □ Distance travelled reduces in 75%
- Less noise and pollution
- ☐ No change in costs
- □ Improvement in quality of service

Example 3: non motorized transport La Petite Reine

- La Petite Reine is a private company of urban distribution of goods using bicycles
- □ Each bicycle can carry up to 1.5 m3 and 190kg
- Urban consolidation centre, in the centre of the distribution area

Last mile green logistics

An integrated approach:

Department of Shipping, Trade and Transport University of the Aegean

Natural Gas Vehicles

Due to recent evolutions in geopolitics, the potential use of Natural Gas Vehicles (NGV) in Cyprus might be of particular interest...

- NGV technology: already technologically mature compared to electric vehicles
- It can be also used through bi-fuel engines; conversion's cost is low.
- Significant advantages of natural gas:
 - energy performance
 - transportation cost savings
 - environmental impacts
 - affordable investment.

Natural Gas Vehicles

Natural Gas Properties

- CNG (Compressed Natural Gas) is supplied in weight terms (Kg)
- 1 Kg of CNG is energetically equivalent to 1,77 liters of gasoline and 2,004 liters of LPG (Liquefied Petroleum Gas)
- Thermal power of CNG is higher than LPG; longer distances with CNG

1kg of Natural Gas equals to: 1,77 liters = 0,55€/liter

- Current prices in Greece:
 - CNG: 0,98 € / kg (including VAT)
 - LPG: 0,93 €/liter (average price in Athens metropolitan area)
 - Gasoline: 1,410 €/liter
 - Diesel: 1,350 €/liter

Towards a City Logistics strategy...

... in Cyprus.

- Integrated transport and land use planning
- Development of dedicated city logistics infrastructure, with development of appropriate Business Plans
- Promotion of alternative combustion technologies and/or non motorized transport
- Traffic management with various restrictions
- Promotion of new information technologies

<u>Aiming at a substantial restriction of externalities, sustainability, combination of both</u> logistics efficiency and quality of life.

Development of <u>Logistics Master Plans</u>: Λευκωσία, Λεμεσός, Λάρνακα, Πάφος etc

