Fleet tracking through Model-Adaptive Event Triggering

Dr. Panayiotis Kolios

Research Associate,

KIOS Research and Innovation Center of Excellence

Background

- KIOS Research Center
 - Established in 2008 as part of the University of Cyprus
 - Upgraded to KIOS Centre of Excellence in 2017 through H2020 TEAMING
 - Strategic collaboration with Imperial College London
- Dedicated to the study of intelligent systems and networks applied to Critical Infrastructures.
- Collaborations with national and international industrial and governmental organizations.

Transport Research @ KIOS

- Monitoring, Control, Management and Security of Intelligent Transportation Systems (ITS)
 - Fault-tolerant traffic management
 - Intelligent Bus Fleet Monitoring
 - UAV-based Traffic Monitoring
- New architectures for congestion-free routing (applied to autonomous vehicles)
- V2X communication for innovative services

Intelligent Bus Fleet Monitoring

Event Triggering

Paradigm shift

Continues triggering \rightarrow Periodic triggering \rightarrow Aperiodic triggering

Events triggered using for example:

thresholds, state observers, residuals, etc

- Wakeup occurs only when an event is triggered
 - Resource-utilization centric approach
 - Shown to benefit control stability due to reduced computational load
 - Achieve data minimization due to thrifty data exchange

Model-based triggering

Stochastic Event Triggering

Stochastic

having a random probability distribution or pattern that may be analyzed statistically but may not be predicted precisely

$$\theta_{lN}^{k} = \frac{1}{N} \sum_{n=1}^{N} [t_{ln}]^{k}$$

$$\theta_{l(N+1)}^{k} = \frac{1}{N+1} \sum_{n=1}^{N+1} [t_{l(n+1)}]^{k}$$

$$= \frac{N\theta_{lN}^{k} + [t_{l(N+1)}]^{k}}{N+1}$$

Binomial transform to compute central moments

$$\theta_{lN}^{k} = \sum_{i=0}^{k} {k \choose i} (-1)^{k-i} \theta_{lN}^{k} (\theta_{lN}^{1})^{k-i}$$

Kernel density estimates

 Event triggering times are probabilistically bounded depending on the threshold sensitivity

Setting the thresholds

- Consider each segment between consecutive check points (i,j)
 - Let t_{ii} be the travel tip between (i,j) for successive iterations (n)
 - Different statistics can be computed for each (i,j)
 - τ_{ij} mean travel time
- Then τ_{ij} a provides a probabilistic bound on the expected trip duration for each (i,j)

Formulation and Solution

Probability of consecutive events:

$$P(i,j) = \bar{P}(i,i+1) \times (i,i+2) \times \dots \times \bar{P}(i,j-1) \times (1-\bar{P}(i,j))$$

Probability of no event

$$\bar{P}(i,j) = P(\tau_{ij} - a \le S_{ij} \le \tau_{ij} + a)$$

Border conditions should also be considered

$$\bar{P}(1,i) \& \bar{P}(j,B)$$

Probability of all possible combination of events

$$P_T = \sum_{c=1}^{3} \prod_{k=1}^{K} [P(\boldsymbol{C}_{ck}, \boldsymbol{C}_{ck+1})] \times P(1, \boldsymbol{C}_{c1}) \times P(\boldsymbol{C}_{cK}, B)$$

Solved using the Bisection method

Fleet monitoring

- GPS traces collected from buses serving route 150 of the Transport Organization of Nicosia District (OSEL)
 - Every 15 seconds, from 3 buses
 - 500,000 traces considered

Fleet monitoring

- Threshold tightens dramatically with increasing volume in K
 - 80% of samples used to compute bounds, 20% for testing
 - Threshold vs Events

Thank you for your attention!!!

