

Bayesian Nonparametric Statistics for Fostering Innovation and Discovery in Biomedical Research

Yanxun Xu

Department of Applied Math and Statistics Mathematics Institute for Data Science Division of Biostatistics and Bioinformatics The Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University

April, BNP 2022

Outline

• Part 1: Monday

- Density estimation for efficient clinical trial designs
- Regression for precision dosing

- Part 2: Wednesday
 - Clustering for subgroup finding
 - Latent feature models for tumor heterogeneity

- Part 3: Friday
 - Estimating treatment effects from observational data

Treatment Effect

Clinicatesterbay

Biomarker-based Trials

<text><text><text><text><text><text><text><text><text><text>

Observational Data

Population

Subgroup

Personalization

One-size Fits All Cancer Treatment

Targeted Therapy

Genomic-driven Cancer Trials

Umbrella Trials

in one **single** cancer type, test the effect of targeted agents on different alterations.

Basket Trials

across **multiple** cancer types, test the effect of targeted agents on the same genomic alternations.

Basket Trial

Motivation Trial: IMPACT II

- Clinical Trial: study of targeted agents in metastatic cancers.
- **Patients:** with metastatic cancer (thyroid, ovarian, melanoma, lung, breast, CRC and other)
- **Treatments**: therapy that targets particular molecular aberrations (TT) vs. standard of care (S)

Data:

• **Population**: heterogeneous population; different mutations; different cancers; baseline covs . . . Treatment might be effective in a sub-population

_											
	\mathbf{TRT}	TUMOR	PFS	CENS	MUTATIONS						
_					m1	m_{2}	m_{3}	$\mathbf{m4}$	m_{5}	m6	_
	TT	THYROID	2.6	0	NA	NA	NA	NA	NA	NA	
	TT	THYROID	3.6	0	NA	0	0	0	NA	0	
	S	OVARIAN	4.2	1	0	NA	0	0	0	0	
	S	MELANOMA	5.8	1	NA	0	0	0	NA	0	
-											

Motivation Trial: IMPACT II

Objective: determine the subpopulation that achieves the maximum benefit from TT.

	EGFR	KRAS	TP53
Lung Cancer			
Colon Cancer			

We will cast this goal as a **decision problem**.

Subpopulation Finding: Decision Problem

- Outcome: progression free survival (PFS) time, $y_i, i = 1, ..., n$
- Action: report a subgroup of patients who might benefit from the TT. A set of mutation-tumor pairs,

$$A = \{a : a = (j_a, c_a)\}$$

- $j_a = \{1, ..., q\}$: Molecular aberration
- $c_a \in \{1, ..., n_c\}$: tumor type

{(KRAS, Lung), (TP53, Breast)}

Subpopulation Finding: Decision Problem

 Action: report a subgroup of patients who might benefit from the TT. A set of mutation-tumor pairs,

$$A = \{a : a = (j_a, c_a)\}$$

Bayes Rule: $A^* = \operatorname{argmax}_A \int u(A, \theta) p(\theta \mid y, X) d\theta$ **Utility:** we favor a subpopulation with difference in log hazards ratio (LR) and large size

Data from IMPACT

- Outcome: progression free survival times, y_i
- Covariates: $x_i = (c_i, m_i, b_i)$
 - Tumor type c_i (categorical)
 - Molecular aberrations $m_i = (m_{i1}, \dots, m_{iM})$ (binary)
 - Other baseline covariates b_i (age, # prior therapies, etc)

Challenges

Probability model needs to allow for:

- interactions of covariates
- heterogeneous population
- missing data
- Extrapolation with small # observations

BNP!

Random Partition

s = (*s*₁,...,*s_n*) be cluster membership indicators,
 s_i ∈ {1,...,*J*}
 S_j = {*i* : *s_i* = *j*}

Product partition model: $p(s) \propto \prod_{j=1}^{J} c(S_j)$

For DP,
$$c(S_j) = \alpha(|S_j| - 1)!$$

Random Partition

- s = (s₁,...,s_n) be cluster membership indicators, s_i ∈ {1,...,J}
 S_i = (i : s_i = j)
- x_j^* by cluster

Product partition model with covariates (PPMx): $p(s \mid x) \propto \prod_{j=1}^{J} c(S_j) g(x_j^*)$

Favors clusters homogeneous in x_i with $g(x_j^*)$ scoring similarity of $x_j^* = \{i : s_i = j\}$.

Mueller et al. (2011 JCGS), Quintana et al. (2015 StandJS)

Similarity function: over observed covariates only

$$g(x_j^*) = \prod_{l=1}^p g_l(\{x_{il}, i \in S_j \text{ and } x_{il} \text{ observed}\}$$

Sampling model: exchangeable within clusters (e.g., lognormal regression model)

$$p(y \mid s, x, \eta) = \prod_{j=1}^{J} \prod_{i \in S_j} p(y_i \mid \eta_j)$$

Results

Scenario 3

Scenario 5

Scenario 4

Scenario 6

- A general class of probability models that allow for interactions and missing data
- Subgroup finding can be casted as a decision problem.
- Separate the decision problem with probability model
- Can be used in clinical trial designs to adaptively assign patients

Outline

• Part 1: Monday

- Density estimation for efficient clinical trial designs
- Regression for precision dosing

- Part 2: Wednesday
 - Clustering for subgroup finding
 - Latent feature models for tumor heterogeneity

- Part 3: Friday
 - Estimating treatment effects from observational data

Tumor Heterogeneity (TH)

70%

Clinical Utility of TH

Nature Reviews | Cancer

Haplotype

47.5% (CGG) + **2.5** (GGG) + **35%** (AGG) + **10%** (TGG) + **5%** (ACG)

Tumor Heterogeneity in Terms of Haplotype Genome (Z) and Cellular Fractions (W)

The **Z** Matrix

The **W** Matrix

Notations

- SNV: point mutations, s = 1, ..., S
- Sample: t = 1, ..., T
- Data: $N_{st} = #$ reads mapped to locus of SNV *s* in sample *t* $n_{st} = #$ of them with SNV.

Sampling Model

$$n_{st} \sim \text{Binomial}(N_{st}, p_{st})$$

VAF: variant allele fraction

Observed VAF:
$$n_{st}/N_{st}$$

Expected VAF: $p_{st} = E(n_{st}/N_{st})$

Link VAFs with Haplotypes

Expected VAF: $p_{st} = E(n_{st}/N_{st})$

Key Idea: A variant read must be from a haplotype with variant.

Link VAFs with Haplotypes

Key Idea: A variant read must be from a haplotype with variant.

s: SNV; c: haplotype (latent); t: sample

 $z_{sc} = 1$: haplotype c has a variant on SNV s. $z_{sc} = 0$: haplotype c has no variant on SNV s. w_{tc} : fraction of haplotype c in sample t.

Linking Equation:

$$p_{st} = \sum w_{tc} z_{sc}$$

Haplotype Genotype Z

p(Z) on ($S \times C$) binary matrix

Indian Buffet Process (IBP)

- Customer *s* chose dish *c* that has been already chosen m_k time with probability m_k/s
- Number of new dishes: $K_s \sim \text{Poisson}(\gamma/s)$

- Customer *s* chose dish *c* that has been already chosen m_k time with probability m_k/s
- Number of new dishes: $K_s \sim \text{Poisson}(\gamma/s)$

- Customer *s* chose dish *c* that has been already chosen m_k time with probability m_k/s
- Number of new dishes: $K_s \sim \text{Poisson}(\gamma/s)$

- Customer *s* chose dish *c* that has been already chosen m_k time with probability m_k/s
- Number of new dishes: $K_s \sim \text{Poisson}(\gamma/s)$

- Customer *s* chose dish *c* that has been already chosen m_k time with probability m_k/s
- Number of new dishes: $K_s \sim \text{Poisson}(\gamma/s)$

- Customer *s* chose dish *c* that has been already chosen m_k time with probability m_k/s
- Number of new dishes: $K_s \sim \text{Poisson}(\gamma/s)$

IBP Prior

Model Summary

$$p(Z, w, n \mid N) = \underbrace{p(Z)}_{\text{IBP}} p(w \mid Z) \underbrace{p(n \mid Z, w, N)}_{\text{Binomial}}.$$
$$p_{st} = \sum_{c} w_{tc} z_{sc}$$
$$p(w_t) \sim \text{Dir}(a_1, \dots, a_C), t = 1, \dots, T.$$

 $p(Z, w \mid N, n)$

Application: Intra-Tumor Heterogeneity

- One tumor from lung cancer; 4 samples surgically dissected
- Each sample generates a whole-genome sequencing data set
- Bio-X pipeline (BWA, Samtools, GATK) for data preprocessing: coverage ~ 100X.
- Selected S=17,160 SNVs

Application: Intra-Tumor Heterogeneity

SNVs

Application: Inter-Tumor Heterogeneity

- Exome-sequencing data for five tumor samples from four different pancreatic ductal adenocarcinoma (PDAC) patients
- Bio-X pipeline (BWA, Samtools, GATK) for data preprocessing: coverage ~ 70X.
- Selected 118 SNVs: 1) significant coverage in all samples; 2) related to PDAC in the KEGG pathway database; 3) are nonsynonymous

Application: Inter-Tumor Heterogeneity

Extension: Categorial IBP

Subclone

		1	2	3	4	5	
	1	0.5	1	0	1	0	
	2	1	0.5	1	1	1	
	3	0.5	0	0	0	0.5	
	4	0.5	0	0.5	0	0.5	
	5	1	1	0.5	0.5	0.5	
	6	1	0	0.5	0	0	
	7	1	0	0	0	0	
	8	1	0.5	0	0.5	1	
	9	1	0.5	1	1	1	
	10	0.5	0	0	0	1	

Clinical Trial Based on TH

