The outline

- Summary of the decompositions
- Gauge-invariant extensions
- Observability
- Accessing the OAM
- Conclusions

Reviews:

Dark spin
Quark spin

$\frac{1}{2} = S_q + L_q + S_g + L_g$

[C.L. (2013)]
[Leader, C.L. (2013)]
The decompositions in a nutshell

Canonical

\[\bar{p} = \frac{\partial L}{\partial \dot{\psi}} \]

\begin{align*}
\bar{S}_q &= \frac{1}{2} \int d^3r \, \psi^{\dagger} i \bar{\Sigma} \psi \\
\bar{L}_q &= \int d^3r \, \psi^{\dagger} \bar{r} \times (-i \bar{\nabla}) \psi \\
\bar{S}_g &= \int d^3r \, \bar{E}^a \times \bar{A}^a \\
\bar{L}_g &= \int d^3r \, \bar{E}^{ai} \bar{r} \times \bar{\nabla} \bar{A}^{ai}
\end{align*}

Gauge non-invariant!

Kinetic

\[\bar{\pi} = m \bar{\dot{\psi}} = \bar{p} + g \bar{A} \]

\begin{align*}
\bar{D} &= \bar{\nabla} + ig \bar{A} \\
\bar{S}_q &= \frac{1}{2} \int d^3r \, \psi^{\dagger} i \bar{\Sigma} \psi \\
\bar{L}_q &= \int d^3r \, \psi^{\dagger} \bar{r} \times (-i \bar{\nabla}) \psi \\
\bar{J}_g &= \int d^3r \, \bar{r} \times (\bar{E}^a \times \bar{B}^a)
\end{align*}

[Jaffe-Manohar (1990)]

[Ji (1997)]
The decompositions in a nutshell

The Chen et al. approach

\[A_\mu(x) = A_{\mu}^{\text{pure}}(x) + A_{\mu}^{\text{phys}}(x) \]

Gauge transformation (assumed)

\[
A_{\mu}^{\text{pure}}(x) \mapsto U(x) \left[A_{\mu}^{\text{pure}}(x) + \frac{i}{g} \partial_\mu \right] U^{-1}(x)
\]

\[
A_{\mu}^{\text{phys}}(x) \mapsto U(x) A_{\mu}^{\text{phys}}(x) U^{-1}(x)
\]

Pure-gauge covariant derivatives

\[
D_{\mu}^{\text{pure}} = \partial_\mu - ig A_{\mu}^{\text{pure}}(x)
\]

\[
D_{\mu}^{\text{pure}} = \partial_\mu - ig \left[A_{\mu}^{\text{pure}}(x) \right]
\]

Field strength

\[
F_{\mu\nu}^{\text{pure}}(x) = \frac{i}{g} \left[D_{\mu}^{\text{pure}}, D_{\nu}^{\text{pure}} \right] = 0
\]

\[
F_{\mu\nu}(x) = D_{\mu}^{\text{pure}} A_{\nu}^{\text{phys}}(x) - D_{\nu}^{\text{pure}} A_{\mu}^{\text{phys}}(x) - ig \left[A_{\mu}^{\text{phys}}(x), A_{\nu}^{\text{phys}}(x) \right]
\]
The decompositions in a nutshell

Canonical

\[p = \frac{\partial L}{\partial \dot{v}} \]

- [Jaffe-Manohar (1990)]
 \[\tilde{S}_q = \frac{1}{2} \int d^3r \psi \dagger \tilde{\Sigma} \psi \]
 \[\tilde{L}_q = \int d^3r \psi \dagger \vec{r} \times (-i \vec{\nabla}) \psi \]
 \[\tilde{S}_g = \int d^3r \vec{E}^a \times \vec{A}^a \]
 \[\tilde{L}_g = \int d^3r \vec{E}^a \dagger \vec{r} \times \vec{\nabla} A^a \]

Kinetic

\[\pi = m \vec{v} = \vec{p} + \vec{g} A \]

- [Ji (1997)]
 \[\vec{D} = \vec{\nabla} + ig \vec{A} \]
 \[\tilde{S}_q = \frac{1}{2} \int d^3r \psi \dagger \tilde{\Sigma} \psi \]
 \[\tilde{L}_q = \int d^3r \psi \dagger \vec{r} \times (-i \vec{D}) \psi \]
 \[\tilde{J}_g = \int d^3r \vec{r} \times (\vec{E}^a \times \vec{B}^a) \]

- [Chen et al. (2008)]
 \[A = A_{\text{pure}} + A_{\text{phys}} \]

- [Wakamatsu (2010)]
 \[A = A_{\text{pure}} + A_{\text{phys}} \]
 \[\tilde{S}_q = \frac{1}{2} \int d^3r \psi \dagger \tilde{\Sigma} \psi \]
 \[\tilde{L}_q = \int d^3r \psi \dagger \vec{r} \times (-i \vec{D}_{\text{pure}}) \psi \]
 \[\tilde{S}_g = \int d^3r \vec{E}^a \times \vec{A}_{\text{phys}}^a \]
 \[\tilde{L}_g = \int d^3r \vec{E}^a \dagger \vec{r} \times \vec{D}_{\text{pure}} A^a \]

\[\int d^3r \vec{r} \times [(\vec{A}_{\text{phys}}^a \times \vec{D}_{\text{pure}}) \times \vec{E}^a] - \int d^3r \vec{E}^a \times \vec{A}_{\text{phys}}^a \]

Gauge non-invariant!

Gauge-invariant extension (GIE)
The decompositions in a nutshell

Canonical

\[\vec{p} = \frac{\partial L}{\partial \dot{\vec{v}}} \]

- \(S_q \)
- \(S_g \)
- \(L_g \)
- \(L_q \)

\[\vec{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \Sigma \psi \]
\[\vec{L}_q = \int d^3 r \psi^\dagger \vec{r} \times (-i \vec{\nabla}) \psi \]
\[\vec{S}_g = \int d^3 r \vec{E}^a \times \vec{A}^a \]
\[\vec{L}_g = \int d^3 r E^{ai} \vec{r} \times \vec{\nabla} A^{ai} \]

Gauge non-invariant!

Kinetic

\[\vec{\pi} = m \vec{\dot{v}} = \vec{p} + g \vec{A} \]

\[\vec{D} = \vec{\nabla} + ig \vec{A} \]

- \(J_g \)
- \(J_q \)
- \(S_q \)
- \(S_g \)
- \(L_g \)
- \(L_q \)

\[\vec{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \Sigma \psi \]
\[\vec{L}_q = \int d^3 r \psi^\dagger \vec{r} \times (-i \vec{D}) \psi \]
\[\vec{J}_g = \int d^3 r \vec{r} \times (\vec{E}^a \times \vec{B}^a) \]

Gauge-invariant extension (GIE)

\[\vec{L}_{pot} = \int d^3 r \rho^a \vec{r} \times \vec{A}_{phys}^a \]
\[\rho^a = g \psi^\dagger t^a \psi = (\vec{D} \cdot \vec{E})^a \]

- \(A = A_{pure} + A_{phys} \)

Explanations

- **Jaffe-Manohar (1990):**
 \[\vec{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \Sigma \psi \]
 \[\vec{L}_q = \int d^3 r \psi^\dagger \vec{r} \times (-i \vec{D}_{pure}) \psi \]
 \[\vec{S}_g = \int d^3 r \vec{E}^a \times \vec{A}_{phys}^a \]
 \[\vec{L}_g = \int d^3 r E^{ai} \vec{r} \times \vec{D}_{pure} A^{ai} \]

- **Chen et al. (2008):**
 \[\vec{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \Sigma \psi \]
 \[\vec{L}_q = \int d^3 r \psi^\dagger \vec{r} \times (-i \vec{D}_{pure}) \psi \]
 \[\vec{S}_g = \int d^3 r \vec{E}^a \times \vec{A}_{phys}^a \]
 \[\vec{L}_g = \int d^3 r E^{ai} \vec{r} \times \vec{D}_{pure} A^{ai} \]

- **Ji (1997):**
 \[\vec{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \Sigma \psi \]
 \[\vec{L}_q = \int d^3 r \psi^\dagger \vec{r} \times (-i \vec{D}) \psi \]
 \[\vec{J}_g = \int d^3 r \vec{r} \times (\vec{E}^a \times \vec{B}^a) \]

- **Gauge-invariant extension (GIE):**
 \[\int d^3 r \vec{r} \times [(\vec{A}_{phys}^a \times \vec{D}_{pure}) \times \vec{E}^a] \]
 \[- \int d^3 r \vec{E}^a \times \vec{A}_{phys}^a \]

- **Wakamatsu (2010):**
 \[\vec{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \Sigma \psi \]
 \[\vec{L}_q = \int d^3 r \psi^\dagger \vec{r} \times (-i \vec{D}_{pure}) \psi \]
 \[\vec{S}_g = \int d^3 r \vec{E}^a \times \vec{A}_{phys}^a \]
 \[\vec{L}_g = \int d^3 r E^{ai} \vec{r} \times \vec{D}_{pure} A^{ai} \]

- **C.L. (2013):**
 \[\vec{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \Sigma \psi \]
 \[\vec{L}_q = \int d^3 r \psi^\dagger \vec{r} \times (-i \vec{D}) \psi \]
 \[\vec{J}_g = \int d^3 r \vec{r} \times (\vec{E}^a \times \vec{B}^a) \]

- **[C.L. (2013)]:**
 \[\int d^3 r \vec{r} \times [(\vec{A}_{phys}^a \times \vec{D}_{pure}) \times \vec{E}^a] \]
 \[- \int d^3 r \vec{E}^a \times \vec{A}_{phys}^a \]
The Stueckelberg symmetry

\[A = A_{\text{pure}} + A_{\text{phys}} = \overline{A}_{\text{pure}} + A_{\text{phys}} - C \]

Ambiguous!
Infinetly many possibilities!

Coulomb GIE

\[\mathcal{D}_{\text{pure}} \cdot \overline{A}_{\text{phys}} = 0 \]

Light-front GIE

\[A^+_{\text{phys}} = 0 \]

[Chen et al. (2008)]

[Hatta (2011)]

[Wakamatsu (2010)]

[Stoilov (2010)]

[C.L. (2013)]

[Chen et al. (2008)]

[Wakamatsu (2010)]
The gauge-invariant extension (GIE)

Gauge-variant operator

GIE1

GIE2

Gauge

« Natural » gauges

Lorentz-invariant extensions

Rest

Center-of-mass

Infinite momentum

« Natural » frames

\[p^2 = m_0^2 \]

\[s = E_{CM}^2 \]

\[x = k_{IMF}^z / p_{IMF}^z \]
The geometrical interpretation

Parallel transport

\[\mathcal{W}(x + dx, x) = 1 + igA_\mu(x)dx^\mu \]

\[\mathcal{W}_C(x + dx, x_0)\mathcal{W}_C(x_0, x) = 1 + igA_{\mu}^{\text{pure}}(x)dx^\mu \]

\[A_{\mu}^{\text{pure}}(x) = \frac{i}{g} \mathcal{W}_C(x, x_0) \frac{\partial}{\partial x^\mu} \mathcal{W}_C(x_0, x) \]

\[A_{\mu}^{\text{phys}}(x) = -\int_{x_0}^{x} \mathcal{W}_C(x, s)F_{\alpha\beta}(s)\mathcal{W}_C(s, x) \frac{\partial s^\alpha}{\partial x^\mu} ds^\beta \]

Path dependence \rightarrow Stueckelberg dependence

[Non-local!]
The semantic ambiguity

Quid?

« physical » ↔ « measurable »

« gauge invariant »

Observables

E.g. cross-sections

Expansion scheme

E.g. collinear factorization

Path

Stueckelberg Background
dependent but fixed by the process

Measurable, physical, gauge invariant and local

Quasi-observables

E.g. parton distributions

« Measurable », « physical », gauge invariant but non-local

Light-front gauge links
The observability

Observable **Quasi-observable** **Not observable**

Canonical

- **[Jaffe-Manohar (1990)]**
 \[
 \mathcal{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \bar{\Sigma} \psi \\
 \mathcal{L}_q = \int d^3 r \psi^\dagger \bar{r} \times (-i \bar{\nabla}) \psi \\
 \mathcal{S}_g = \int d^3 r \bar{E}^a \times \bar{A}^a \\
 \mathcal{L}_g = \int d^3 r \bar{E}^{ai} \bar{r} \times \bar{\nabla} \bar{A}^{ai}
 \]

- **[Chen et al. (2008)]**
 \[
 \mathcal{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \bar{\Sigma} \psi \\
 \mathcal{L}_q = \int d^3 r \psi^\dagger \bar{r} \times (-i \bar{\nabla}_{\text{pure}}) \psi \\
 \mathcal{S}_g = \int d^3 r \bar{E}^a \times \bar{A}_{\text{phys}}^a \\
 \mathcal{L}_g = \int d^3 r \bar{E}^{ai} \bar{r} \times \bar{D}_{\text{pure}} \bar{A}_{\text{phys}}^{ai}
 \]

Kinetic

- **[Ji (1997)]**
 \[
 \mathcal{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \bar{\Sigma} \psi \\
 \mathcal{L}_q = \int d^3 r \psi^\dagger \bar{r} \times (-i \bar{D}) \psi \\
 \mathcal{J}_g = \int d^3 r \bar{r} \times (\bar{E}^a \times \bar{B}^a)
 \]

- **[Wakamatsu (2010)]**
 \[
 \mathcal{S}_q = \frac{1}{2} \int d^3 r \psi^\dagger \bar{\Sigma} \psi \\
 \mathcal{L}_q = \int d^3 r \psi^\dagger \bar{r} \times (-i \bar{D}) \psi \\
 \mathcal{S}_g = \int d^3 r \bar{E}^a \times \bar{A}_{\text{phys}}^a \\
 \mathcal{L}_g = \int d^3 r \bar{r} \times (\bar{E}^a \times \bar{B}^a)
 \int d^3 r \bar{r} \times [(\bar{A}_{\text{phys}}^a \times \bar{D}_{\text{pure}}) \times \bar{E}^a] \\
 - \int d^3 r \bar{E}^a \times \bar{A}_{\text{phys}}^a
 \]
The gluon spin

\[\Delta g = \int_0^1 dx \, \Delta g(x) \]

\[= \int_0^1 dx \, \frac{i}{xP^+} \int \frac{dz^-}{2\pi} \, e^{ixP^+z^-} \langle P, \Lambda | 2 \text{Tr}[F^{+\alpha}(0)W_{0,z^-}] \tilde{F}^{+\alpha}(z^-)W_{z^-,0}] | P, \Lambda \rangle \]

\[= \frac{\epsilon^{+\alpha\beta}}{2P^+} \langle P, \Lambda | 2 \text{Tr}[F^{+\alpha}(0) \int dz^- \frac{1}{2} \epsilon(z^-) W_{0,z^-} F^{+\beta}(z^-)W_{z^-,0}] | P, \Lambda \rangle \]

« Measurable », gauge invariant but non-local

\[\text{Light-front gauge} \quad A^+ = 0 \]

\[\text{Light-front GIE} \quad A^+_{\text{phys}} = 0 \]

\[\text{[Jaffe-Manohar (1990)]} \]

\[= \frac{\epsilon^{+\alpha\beta}}{2P^+} \langle P, \Lambda | 2 \text{Tr}[F^{+\alpha}(0)A^{\beta}(0)] | P, \Lambda \rangle \]

\[= \frac{1}{2P^+} \langle P, \Lambda | \frac{1}{2} \epsilon^{+\alpha\beta} M^{+\alpha\beta,\text{JY}}(0) | P, \Lambda \rangle \]

\[= \frac{\langle P, \Lambda | S_{g,\text{spin}}^z | P, \Lambda \rangle}{\langle P, \Lambda | P, \Lambda \rangle} \]

Local fixed-gauge interpretation

\[\text{[Hatta (2011)]} \]

\[= \frac{\epsilon^{+\alpha\beta}}{2P^+} \langle P, \Lambda | 2 \text{Tr}[F^{+\alpha}(0)A^{\beta,\text{Hatta}}_{\text{phys}}(0)] | P, \Lambda \rangle \]

\[= \frac{1}{2P^+} \langle P, \Lambda | \frac{1}{2} \epsilon^{+\alpha\beta} M^{+\alpha\beta,\text{Hatta}}(0) | P, \Lambda \rangle \]

\[= \frac{\langle P, \Lambda | S_{g,\text{Hatta}}^z | P, \Lambda \rangle}{\langle P, \Lambda | P, \Lambda \rangle} \]

Non-local gauge-invariant interpretation
The kinetic and canonical OAM

Kinetic OAM (Ji)

\[
L_z = \frac{1}{2} \int \frac{d x \cdot d y}{J_z} \left[H(x, 0, 0) + E(x, 0, 0) \right] - \frac{1}{2} \int \frac{d x \cdot d y}{S_z} \left[H(x, 0, 0) \right]
\]

Quark *naive* canonical OAM (Jaffe-Manohar)

\[
L_z = - \int \frac{d x \cdot d y}{k_\perp} \left[H(x, 0, 0) + E(x, 0, 0) + \tilde{E}_2(x, 0, 0) \right]
\]

Pure twist-3

Quark *naive* canonical OAM (Jaffe-Manohar)

\[
L_z = - \int \frac{d x \cdot d y}{k_\perp} \left[H(x, 0, 0) + E(x, 0, 0) + \tilde{E}_2(x, 0, 0) \right]
\]

Canonical OAM (Jaffe-Manohar)

\[
\ell_z = - \int \frac{d x \cdot d y}{k_\perp} \left[h_4(x, k_\perp) \right]
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>LCCQM</th>
<th>(\chi)QSM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(u)</td>
<td>(d)</td>
</tr>
<tr>
<td>(\ell_q^q)</td>
<td>0.131</td>
<td>-0.005</td>
</tr>
<tr>
<td>(L_q^q)</td>
<td>0.071</td>
<td>0.055</td>
</tr>
<tr>
<td>(L_q^q)</td>
<td>0.169</td>
<td>-0.042</td>
</tr>
</tbody>
</table>

\[\ell_z = L_z \quad \text{but} \quad \ell_q^q \neq L_q^q\]

![No gluons and not QCD EOM!](image_url)
The phase-space picture

Complete parametrizations:
- Quarks [Meissner, Metz, Schlegel (2009)]
- Quarks & gluons [C.L., Pasquini (2013)]

GTMDs
TMDs
FFs
PDFs
Charges
GPDs

2+3D → 0+3D
0+1D
2+0D
0+1D
2+1D

k^+ = xP^+

[f d^2 b_⊥, f d^2 k_⊥, f d^x]
Average transverse quark momentum in a longitudinally polarized nucleon

\[\langle \vec{k}_\perp \rangle (b_\perp) = \int dx \, d^2 k_\perp \, \vec{k}_\perp \, \rho_+^{[\gamma^+]} (x, \vec{k}_\perp, \vec{b}_\perp) \]

\[\langle \bar{k}_\perp^n \rangle \]

\[\langle \bar{k}_\perp^d \rangle \]

\[F_{14} \]

« Vorticity »
The conclusions

• Kinetic and canonical decompositions are physically inequivalent and are both interesting

• Measurability requires gauge invariance but not necessarily local expressions

• All the canonical and kinetic contributions are measurable (twist-3 GPDs, GTMDs?) and computable on a lattice

Reviews:
[C.L. (2013)]
[Leader, C.L. (2013)]
Backup slides
The path dependence

Orbital angular momentum

\[\ell_z = \frac{\langle p, + | \hat{L}_z | p, + \rangle}{\langle p, + | p, + \rangle} \]

\[\hat{L}_z = \int d^4r \, \delta(r^+) \, \bar{\psi}(r) \gamma^+ \left(\vec{r}_\perp \times i \vec{D}_\perp^{\text{pure}} \right)_z \psi(r) \]

\[= \int d^4r \, \delta(r^+) \, \bar{\psi}_D(r) \gamma^+ \left(\vec{r}_\perp \times (-i) \vec{\nabla}_\perp \right)_z \psi_D(r) \]

\[D^\text{pure}_\mu(y) = \partial_\mu - ig A^\text{pure}_\mu(y) \]

\[= \partial_\mu - ig \left[\frac{i}{g} \mathcal{W}_{[y,y_0]} \partial_\mu \mathcal{W}_{[y_0,y]} \right] \]

\[= \mathcal{W}_{[y,y_0]} \psi_{D}(y) \rightarrow \text{Reference point} \]

Canonical

[Jaffe, Manohar (1990)]

\[D^\text{pure}_\mu A^+ = 0 \quad \partial_\mu \]

\[\psi_D(r) A^+ = 0 \quad \psi(r) \]

Kinetic

[Ji (1997)]

\[D^\text{pure}_\mu(r) = D_\mu(r) \]

\[D^\text{pure}_\mu(y) \neq D_\mu(y) \quad y \neq r \]

\[\mathcal{W}_{\text{straight}}^{[r,y]} \]

\[\ell^\text{DY} = \ell^\text{SIDIS} \]
The quark orbital angular momentum

\[W_{A'A'}^{[\Gamma]}(x, \xi, \vec{k}_\perp, \vec{\Delta}_\perp) = \frac{1}{2} \langle p', A' | \hat{W}^{[\Gamma]}(0, x P^+, \vec{k}_\perp) | p, A \rangle \]

Wigner distribution

\[\rho_{A'A'}^{[\Gamma]}(x, \vec{k}_\perp, \vec{b}_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} e^{-i\vec{\Delta}_\perp \cdot \vec{b}_\perp} W_{A'A'}^{[\Gamma]}(x, 0, \vec{k}_\perp, \vec{\Delta}_\perp) \]

Orbital angular momentum

\[\ell_z = \int dx \, d^2 k_\perp \, d^2 b_\perp \left(\vec{b}_\perp \times \vec{k}_\perp \right)_z \rho_{++}^{[\gamma^+]}(x, \vec{k}_\perp, \vec{b}_\perp) \]

Unpolarized quark density

\[= \int dx \, d^2 k_\perp \left(\vec{k}_\perp \times i \vec{\nabla}_{\Delta_\perp} \right)_z W_{++}^{[\gamma^+]}(x, 0, \vec{k}_\perp, \vec{\Delta}_\perp) \bigg|_{\vec{\Delta}_\perp=\vec{0}_\perp} \]

\[= - \int dx \, d^2 k_\perp \frac{\vec{k}_\perp^2}{M^2} F_{14}(x, 0, \vec{k}_\perp, \vec{0}_\perp) \]

Parametrization

\[W_{A'A'}^{[\gamma^+]} = \frac{1}{2M} \bar{u}(p', A') \left[F_{11} + \frac{i \sigma_{\perp}^k}{P^+} F_{12} + \frac{i \sigma_{\perp}^\Delta}{P^+} F_{13} + \frac{i \sigma_{\perp}^k \Delta}{M^2} F_{14} \right] u(p, A) \]

[Meißner, Metz, Schlegel (2009)]
The emerging picture

Longitudinal

\[g_{1L} \leftrightarrow \tilde{H} \]
\[\ell_z \leftrightarrow F_{14} \]
\[C_z \leftrightarrow G_{11} \]

[C.L., Pasquini (2011)]

Transverse

\[h_1 \leftrightarrow H_T \]
\[f_{1T}^{\perp} \leftrightarrow E \]
\[h_1^{\perp} \leftrightarrow 2\tilde{H}_T + E_T \]

[Barone et al. (2008)]
The gauge symmetry

Quantum electrodynamics

\[\psi(x) \quad \hat{\psi}_{\text{phys}}(x) = U_{\text{pure}}^{-1}(x)\psi(x) \]

Passive

\[\psi(x) \leftrightarrow U(x)\psi(x) \]

\[U_{\text{pure}}(x) \leftrightarrow U(x)U_{\text{pure}}(x) \]

\[\hat{\psi}_{\text{phys}}(x) \leftrightarrow \hat{\psi}_{\text{phys}}(x) \]

Active

\[\psi(x) \leftrightarrow U(x)\psi(x) \]

\[U_{\text{pure}}(x) \leftrightarrow U_{\text{pure}}(x) \]

\[\hat{\psi}_{\text{phys}}(x) \leftrightarrow U(x)\hat{\psi}_{\text{phys}}(x) \]

Active \times (Passive)^{-1}

\[\psi(x) \leftrightarrow \psi(x) \]

\[U_{\text{pure}}(x) \leftrightarrow U_{\text{pure}}(x)U^{-1}(x) \]

\[\hat{\psi}_{\text{phys}}(x) \leftrightarrow U(x)\hat{\psi}_{\text{phys}}(x) \]

[C.L. (2013)]

« Physical »

« Background »
The phase-space distribution

Wigner distribution

\[\rho(r, k) = \int \frac{dz}{2\pi} e^{-ikz} \psi^*(r - \frac{z}{2})\psi(r + \frac{z}{2}) \]
\[= \int \frac{d\Delta}{(2\pi)^2} e^{-i\Delta r} \varphi^*(k + \frac{\Delta}{2})\varphi(k - \frac{\Delta}{2}) \]

Probabilistic interpretation

\[\int dk \rho(r, k) = |\psi(r)|^2 \]
\[\int dr \rho(r, k) = |\varphi(k)|^2 \]

Expectation value

\[\langle \hat{O} \rangle = \int dr \psi^*(r)O(r, -i\partial_r)\psi(r) \]
\[= \int \frac{dk}{2\pi} \varphi^*(k)O(i\partial_k, k)\varphi(k) \]
\[= \int dr dk O(r, k)\rho(r, k) \]

Galilei covariant

- Either non-relativistic
- Or restricted to transverse position

[H. Wigner (1932)]
[M. Moyal (1949)]
Parametrization @ twist-2 and $\xi=0$

Quark polarization

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>T_x</th>
<th>T_y</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>F_{11}</td>
<td>$\frac{i}{M} (k_y H_{11} + \Delta_y H_{12})$</td>
<td>$-\frac{i}{M} (k_x H_{11} + \Delta_x H_{12})$</td>
<td>$\frac{i(\Delta_{\perp} \times k_{\perp}) \cdot G_{11}}{M^2}$</td>
</tr>
<tr>
<td>T_x</td>
<td>$\frac{i}{M} \left(k_y F_{11} + \Delta_y (F_{13} - \frac{1}{2} F_{11}) \right)$</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>T_y</td>
<td>$-\frac{i}{M} \left(k_x F_{11} + \Delta_x (F_{13} - \frac{1}{2} F_{11}) \right)$</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>L</td>
<td>$\frac{1}{M} (k_x H_{17} + \Delta_x H_{18})$</td>
<td>$\frac{1}{M} (k_y H_{17} + \Delta_y H_{18})$</td>
<td>G_{14}</td>
<td></td>
</tr>
</tbody>
</table>

Nucleon polarization

$\Delta_\perp = \tilde{\Theta}_\perp$

$f \, d^2 k_\perp$

GTMDs

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>T_x</th>
<th>T_y</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_1</td>
<td>$\frac{k_y}{M} h_{11}$</td>
<td>$-\frac{k_x}{M} h_{11}$</td>
<td></td>
</tr>
<tr>
<td>T_x</td>
<td>$\frac{k_y}{M} f_{1T}$</td>
<td>$h_1 + \frac{k_x^2}{2M^2} h_{1T}$</td>
<td>$\frac{k_x k_y}{M^2} h_{1T}$</td>
<td>$\frac{k_x}{M} g_{1T}$</td>
</tr>
<tr>
<td>T_y</td>
<td>$-\frac{k_x}{M} f_{1T}$</td>
<td>$\frac{k_x}{M^2} h_{1T}$</td>
<td>$h_1 - \frac{k_x^2}{2M^2} h_{1T}$</td>
<td>$\frac{k_y}{M} g_{1T}$</td>
</tr>
<tr>
<td>L</td>
<td>$\frac{k_x}{M} h_{1L}$</td>
<td>$\frac{k_y}{M} h_{1L}$</td>
<td>g_{1L}</td>
<td></td>
</tr>
</tbody>
</table>

TMDs

GPDs

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>T_x</th>
<th>T_y</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>H</td>
<td>$\frac{\Delta_y}{2M} (2\tilde{H}_T + E_T)$</td>
<td>$-\frac{\Delta_x}{2M} (2\tilde{H}_T + E_T)$</td>
<td></td>
</tr>
<tr>
<td>T_x</td>
<td>$\frac{\Delta_y}{2M} E$</td>
<td>$H_T - \frac{\Delta^2_y}{4M^2} \tilde{H}_T$</td>
<td>$-\frac{\Delta_x \Delta_y}{2M^4} \tilde{H}_T$</td>
<td></td>
</tr>
<tr>
<td>T_y</td>
<td>$-\frac{\Delta_x}{2M} E$</td>
<td>$-\frac{\Delta_x \Delta_y}{2M^4} \tilde{H}_T$</td>
<td>$H_T + \frac{\Delta^2_x}{4M^2} \tilde{H}_T$</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>\tilde{H}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monopole

Dipole

Quadrupole
OAM and origin dependence

Naive
\[\mathcal{L}_{iz} = \vec{r}_{i\perp} \times \vec{k}_{i\perp} \]

- Depends on proton position

Momentum conservation
\[\sum_{i=1}^{N} \vec{k}_{i\perp} = \vec{0}_{\perp} \]

Physical interpretation?

Relative
\[\ell_{iz}^{\text{rel}} = \vec{\rho}_{i\perp} \times \vec{k}_{i\perp} \]

Intrinsic
\[\ell_{iz}^{\text{int}} = \vec{b}_{i\perp} \times \vec{k}_{i\perp} \]

Transverse center of momentum
\[\vec{R}_{\perp} = \sum_{i=1}^{N} x_i \vec{r}_{i\perp} \]

Equivalence
\[\mathcal{L}_z = \ell_z^{\text{rel}} = \ell_z^{\text{int}} \]

- Intrinsic
\[\sum_{i=1}^{N} \vec{b}_{i\perp} \times \vec{k}_{i\perp} = \sum_{i=1}^{N} \left(\vec{r}_{i\perp} - \vec{R}_{\perp} \right) \times \vec{k}_{i\perp} \]

- Naive
\[\sum_{i=1}^{N} \vec{b}_{i\perp} \times \vec{k}_{i\perp} = \sum_{i=1}^{N} \vec{r}_{i\perp} \times \vec{k}_{i\perp} - \vec{R}_{\perp} \times \sum_{i=1}^{N-1} \vec{k}_{i\perp} \]

- Relative
\[\sum_{i=1}^{N-1} \vec{\rho}_{i\perp} \times \vec{k}_{i\perp} \]
Overlap representation

Fock expansion of the proton state

\[|p\rangle = \Psi_{qq} |qq\rangle + \Psi_{qqg} |qqg\rangle + \Psi_{qqqg} |qqq\rangle + \Psi_{qqqq\bar{q}} |qqqq\bar{q}\rangle + \cdots \]

Fock states

Simultaneous eigenstates of

\[P^+ = \sum_{i=1}^{N} k_i^+ \]

\[\vec{0}_\perp = \vec{P}_\perp = \sum_{i=1}^{N} \vec{k}_\perp \]

Momentum

Light-front helicity
Overlap representation

Fock-state contributions

Kinetic OAM

\[L_z^{N\beta,q} = \frac{1}{2} \int [dx]_N [d^2k_\perp]_N \sum_{i=1}^{N} \delta_{qq_i} \left\{ (x_i - \lambda_i)|\Psi_{N\beta}^\uparrow|^2 + Mx_i \sum_{n=1}^{N} (\delta_{ni} - x_n) \left[\Psi_{N\beta}^\uparrow \frac{\partial}{\partial k_n} \Psi_{N\beta} \right] \right\} \]

Naive canonical OAM

\[\mathcal{L}_z^{N\beta,q} = -\frac{i}{2} \int [dx]_N [d^2k_\perp]_N \sum_{i=1}^{N} \delta_{qq_i} \left[\Psi_{N\beta}^\uparrow \left(\vec{k}_i \times \vec{\nabla}_{k_i} \right) z \Psi_{N\beta} \right] \]

Canonical OAM

\[\ell_z^{N\beta,q} = -\frac{i}{2} \int [dx]_N [d^2k_\perp]_N \sum_{i=1}^{N} \delta_{qq_i} \sum_{n=1}^{N} (\delta_{ni} - x_n) \left[\Psi_{N\beta}^\uparrow \left(\vec{k}_i \times \vec{\nabla}_{k_n} \right) z \Psi_{N\beta} \right] \]