
How beginner-friendly is a
programming language?
A short analysis based on
Java and Python examples

Jean-Philippe Pellet1,2, Amaury Dame2, and Gabriel Parriaux1

ISSEP 2019, November 19th, 2019
1

1 University of Teacher Education, Lausanne, Switzerland
2 École polytechnique fédérale de Lausanne, Switzerland

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Outline

1. Introduction & context

2. Comparison of excerpts & desiderata

3. Conclusion

2

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Outline

1. Introduction & context

2. Comparison of excerpts & desiderata

3. Conclusion

3

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Our context

• Freshman course given to future engineers at EPFL

—Material scientists, civil engineers

• For many, first programming course… and last

• What/how to teach? Not future computer scientists

— Focus on programming as a tool or on concepts of programming?

➡ “As a tool” would mean more libraries, recipes, examples

➡ “Concepts” has as goal a deeper understanding of the code and execution
model

4

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Java → Python

• Course had been in Java for many years

• Faculty demanded to switch to Python

5

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Java → Python

• Course had been in Java for many years

• Faculty demanded to switch to Python

5

• Oh no…

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Java → Python

• Course had been in Java for many years

• Faculty demanded to switch to Python

5

• Oh no…

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Java → Python

• Course had been in Java for many years

• Faculty demanded to switch to Python

5

• Oh no…

• Whined about it…
Did it…
Rather liked it!

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

What’s relevant for the language choice?

• Pears et al. (2007): intrinsic vs extrinsic criteria

— Intrinsic: syntax, compiled vs. interpreted, paradigm, typed…

— Extrinsic: industry demands, trends, availability of teaching material…

• Focusing here on intrinsic

• Goal is not to fuel an ongoing war

— See how easily some cross-cutting concepts can be illustrated

— “Easily”: free of syntactic or conceptual noise

— Examples with excerpts from Java and Python

6

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Common discussions (1/2)

7

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Common discussions (1/2)

• Can’t compare Java and Python!

— At some point, we have to, so that we can make a choice

7

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Common discussions (1/2)

• Can’t compare Java and Python!

— At some point, we have to, so that we can make a choice

• Don’t want to use a single language!

— Transference comes with mastery, important to stick to one language in
the beginning

— Plus: choosing two is not automatically easier than choosing one

7

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Common discussions (1/2)

• Can’t compare Java and Python!

— At some point, we have to, so that we can make a choice

• Don’t want to use a single language!

— Transference comes with mastery, important to stick to one language in
the beginning

— Plus: choosing two is not automatically easier than choosing one

• I don’t agree that having to teach difficult feature X or language
Y is a problem. You have to teach formal details as well

— Time is limited. Time not spent on low-level points can be spent on higher-
level points – just different, according to course objectives

7

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Common discussions (2/2)

8

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Common discussions (2/2)

• One should start with a visual programming language anyway

— Yes, we’d recommend it! Not part of the options we had

— Execution model not always easier with VPLs

8

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Common discussions (2/2)

• One should start with a visual programming language anyway

— Yes, we’d recommend it! Not part of the options we had

— Execution model not always easier with VPLs

• I want static typing!

— You can still get some of it in most dynamically typed languages

8

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Outline

1. Introduction & context

2. Comparison of excerpts & desiderata

3. Conclusion

9

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

1. A slightly more complicated “hello world”

10

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

Want to exemplify:
• Variable assignment
• Arithmetic op
• Print to terminal

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

1. A slightly more complicated “hello world”

10

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

Want to exemplify:
• Variable assignment
• Arithmetic op
• Print to terminal

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

1. A slightly more complicated “hello world”

10

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

Want to exemplify:
• Variable assignment
• Arithmetic op
• Print to terminal

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

1. A slightly more complicated “hello world”

10

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

Want to exemplify:
• Variable assignment
• Arithmetic op
• Print to terminal

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

1. A slightly more complicated “hello world”

10

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

Want to exemplify:
• Variable assignment
• Arithmetic op
• Print to terminal

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

1. A slightly more complicated “hello world”

10

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

Want to exemplify:
• Variable assignment
• Arithmetic op
• Print to terminal

Need to explain/ignore:
• Braces
• Brackets
• Dot
• Class
• Method
• Static
• Argument
• Semicolon
• Types

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

1. A slightly more complicated “hello world”

10

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

Want to exemplify:
• Variable assignment
• Arithmetic op
• Print to terminal

Need to explain/ignore:
• Braces
• Brackets
• Dot
• Class
• Method
• Static
• Argument
• Semicolon
• Types

precise, how to care about formal details, and they’ll end up knowing more about

the lower-level foundations and how the machine works.”

Our semester is 14 weeks and there’s only so much we can do in that time.
We could of course have decided that such learnings matter and are relevant.
But skipping them also gives us more time to address higher-level concepts that
may more easily be applicable to other languages (and, more broadly, to general
computational thinking), contrary to lower-level, language-specific constructs.

— “One should start programming with a block-based visual language, which

avoids the mentioned syntactic pitfalls.”

Yes, one could. Actually, we would strongly recommend such an approach
for K–12 education, for instance. But we should stay aware that not all of the
syntactic pitfalls are avoided simply by using a block-based language. The issue
of conceptual noise remains, and visual languages have limitations of their own.

— “I don’t want to teach in any language that is not statically typed.”

This seems to be a common gripe. Many traditionally dynamically typed
languages can now include type annotations in language extensions (or derived
languages)3. Gradual typing thus becomes possible and allows to fine-tune the
tradeoff between (roughly out) the extra typing necessary and the additional
diagnostics a static type checker can provide. It sounds hardly possible, though,
for a statically typed language to relax its need for types—although modern
languages have type-inference capabilities that alleviate the feeling of being too
“constrained” by the need of declaring types everywhere. Whether to type or not
type is a huge theme on its own that we, for lack of space but with regret, don’t
discuss further in this paper.

4 Analysis & Desiderata

We now present a few code excerpts4 and comment on the differences in ease of
teaching and learning that we have observed. Note that, in such a short paper,
we make no claim of exhaustivity or coverage whatsoever. Also note that the
arguments and desiderata presented below are to be read with the target audience
in mind—non-CS, beginner students, first semester of college—and we don’t
claim that they automatically suit a more general context.

Excerpt 1. A slightly more complicated “hello world”.
Java

J1 public class Demo {
J2 public static void main(String[] args) {
J3 int side = 4;
J4 int area = side * side;
J5 System.out.println(area);
J6 }
J7 }

Python

P1side = 4
P2area = side * side
P3print(area)

3 MyPy with type annotations since Python 3.5, TypeScript or Flow for JavaScript,
type hints since PHP 5, Typed Racket, Typed Closure, etc.

4 The width of one unit of indentation was chosen to be 2 columns for easier layout,
but was always presented to students as 4 columns.

4

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Noise

11

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Noise

• Noise in a code excerpt refers to extraneous elements that
have to be present (and, potentially, understood), while being
unrelated, or very indirectly related, to the concept we wish to
illustrate with that except

11

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Noise

• Noise in a code excerpt refers to extraneous elements that
have to be present (and, potentially, understood), while being
unrelated, or very indirectly related, to the concept we wish to
illustrate with that except

— Syntactical noise → semicolons

—Conceptual noise → need for class in Java

11

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 1

The first steps in a language (e.g., console print,
variable assignment) should be painless and

minimize the noise (syntactic and conceptual).

12

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 1

The first steps in a language (e.g., console print,
variable assignment) should be painless and

minimize the noise (syntactic and conceptual).

12

CONCEPTUAL MODEL

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

2. Creating an associative data structure

13

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

Want to exemplify:
• Associative data

structure definition

Need to explain/ignore:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

2. Creating an associative data structure

13

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

• Integer ≠ int

Want to exemplify:
• Associative data

structure definition

Need to explain/ignore:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

2. Creating an associative data structure

13

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

• Integer ≠ int
• new

Want to exemplify:
• Associative data

structure definition

Need to explain/ignore:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

2. Creating an associative data structure

13

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

• Integer ≠ int
• new
• Diamond

Want to exemplify:
• Associative data

structure definition

Need to explain/ignore:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

2. Creating an associative data structure

13

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

• Integer ≠ int
• new
• Diamond
• Methods to define data

Want to exemplify:
• Associative data

structure definition

Need to explain/ignore:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

2. Creating an associative data structure

13

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

• Integer ≠ int
• new
• Diamond
• Methods to define data

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

Want to exemplify:
• Associative data

structure definition

Need to explain/ignore:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

2. Creating an associative data structure

13

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

• Integer ≠ int
• new
• Diamond
• Methods to define data

• More declarative approach
• Mental model easier

This could come right after a “hello world” example. Its intent is to show the
concepts of (a) storing a value in a variable; (b) using an arithmetic operator;
and (c) printing something to the console, and illustrate the way to determine
the “entry point”/main function of the program. To newcomers, it is already
pretty dense code, as there are indeed these three new concepts to figure out
conceptually and to recognize syntactically5. The semantics here of Java and
Python is really close, but the syntactic effort is quite different. Symbols like
braces and brackets are worth pointing out because they need more explaining to
understand since for beginners, they are not immediately linked to a concept they
know—an exception may be the parentheses in the definition and application of a
mathematical function6. But the opening and closing braces and brackets, the dot
and the semicolon are all here “parasitic” in Java, because they are needed even
for this very small example to run. Moreover, no fewer than five keywords are
needed, under each of which a potentially complicated concept is hiding. Usually,
we tell student not to worry about them now and just to accept them—which is
problematic, because from one of the very first examples, this shows that there’s
a lot of unknown already in the basic lines they have to write.

We call this noise, defined as extraneous elements that have to be typed in
(and, potentially, understood), while being unrelated, or very indirectly related,
to the basic concept we wish to illustrate with some code except. This noise is
strongly linked to the syntax of the language. We propose to call it syntactic

noise when it is due to simple syntactic rules of the language without a strong
underlying, independent concept (e.g., the need for semicolons in Java), and
to call it conceptual noise when additional concepts need to be explained and
understood to measure the implications of the syntax being used (e.g., the use of
static in Java).

We see that the Python version, on the contrary, is terse and corresponds
line by line to the three new concepts with no syntactic or conceptual noise. (We
avoid the issue of typing, rapidly mentioned in Section 3.)

Desideratum 1. The first steps in a language (e.g., console print, variable assignment)
should be painless and minimize both the syntactic noise and the conceptual noise.

Excerpt 2. Creating an associative data structure containing 3 key–value pairs.
Java

J1 Map<Integer, String> numbers = new HashMap<>();
J2 numbers.put(1, "one");
J3 numbers.put(2, "two");
J4 numbers.put(10, "ten");

Python

P1numbers = {
P21: "one",
P32: "two",
P410: "ten"
P5}

5 There are other, less directly apparent concepts like scoping and memory management
that can be discussed with this example and that we opted to leave out for now with
beginners.

6 For consistency with the syntax used for stack-allocated objets with custom con-
structors, C++ goes the other way and allows any variable to be initialized with a
parenthesis-based syntax resembling function application.

5

Want to exemplify:
• Associative data

structure definition

Need to explain/ignore:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 2

14

Broadly used concepts sufficiently different from
other concepts should have dedicated syntax (and

not rely on existing syntactic constructs).

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 2

14

Broadly used concepts sufficiently different from
other concepts should have dedicated syntax (and

not rely on existing syntactic constructs).

CONCEPTUAL SEPARATION

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

3. Extracting code in functions/methods

15

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

declaratively (e.g., React, Vue.js, SwiftUI, etc.). A syntax denoting primarily a
function call is maybe not best used to represent associative data. In that spirit,
having specialized syntax to denote, for instance, a linear data structure (an
array, list, or set), and an associative data structure (map) thus seems worthwhile.
In this regard, Python has special syntax for list, set and (as shown above)
dictionary literals; Java has special syntax for array literals only. Today, Java
arrays are regarded as a low-level data structure, even being called “deprecated”
in favor of generic dynamic lists [9]. The interest of special syntax for them seems
clearly smaller than it would be for more dynamic and flexible data structures.

We also note that many operations mutating simple linear and associative data
structures can be done via subscripting in Python. Subscripting exists in Java
but only for arrays and only via int indices. In Python, lists for instance support
subscripting via the indication of a single index like in Java, but also of slices
of indices8. Slice-based subscripting supports assignment as well, thus enabling
higher-level multiple modifications in a single statement. A syntactic advantage
is that the assignment operator = used more widely in various circumstances
where it denotes a mutation of the data structure on its left hand side. This is
consistent with a simple variable assignment known from some of the very first
code examples.

Excerpt 3. Extracting repeated code sections in methods/functions.
Java

J1 public class Friends {
J2 public static void main(String[] args) {
J3 Map<String, Set<String>> friendships =
J4 new HashMap<>();
J5 addFriends(friendships, "A", "B");
J6 addFriends(friendships, "A", "C");
J7 addFriends(friendships, "D", "C");
J8 System.out.println(friendships);
J9 }

J10 public static void addFriends(
J11 Map<String, Set<String>> friendships,
J12 String name1, String name2) {
J13 addOneWay(friendships, name1, name2);
J14 addOneWay(friendships, name2, name1);
J15 }
J16 public static void addOneWay(
J17 Map<String, Set<String>> friendships,
J18 String name1, String name2) {
J19 if (friendships.containsKey(name1)) {
J20 friendships.get(name1).add(name2);
J21 } else {
J22 Set<String> newSet = new HashSet<>();
J23 newSet.add(name2);
J24 friendships.put(name1, newSet);
J25 }
J26 }
J27 }

Python

P1friendships = {}

P2def add_friends(name1, name2):

P3def add_one_way(name1, name2):
P4if name1 in friendships:
P5friendships[name1].add(name2)
P6else:
P7friendships[name1] = {name2}

P8add_one_way(name1, name2)
P9add_one_way(name2, name1)

P10add_friends("A", "B")
P11add_friends("A", "C")
P12add_friends("D", "C")

P13print(friendships)

This excerpt demonstrate the effort to factor out repeated code. Here, we
are trying to populate a map linking names to sets of the names of their friends,
8 For instance, mylist[1:4] yields a new Python list with elements 1 (incl.) to 4 (excl.).

Custom classes can also support subscripting with arbitrary subscript types.

7

: Dict[str, Set[Str]] = {}

Want to
exemplify:
• 1:n relation
• Extraction of

repeated code in
methods/functions

A
B

C
D

A → {B, C}
B → {A}
C → {A, D}
D → {C}

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 3

16

Functions should be syntactically easily definable
and quickly recognizable so as to allow convenient

code factorization.

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 3

16

Functions should be syntactically easily definable
and quickly recognizable so as to allow convenient

code factorization.

MODULARIZATION

ABSTRACTION

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

data Rectangle = Rectangle Point Float FloatHaskell:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

data Rectangle = Rectangle Point Float FloatHaskell:
case class Rectangle(
 center: Point, width: Double, height: Double)

Scala:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

4. Simple compound data type

17

Excerpt 4. Creating a simple compound data type with basic inheritance.
Java

J1 public class Rectangle extends BoardElement {
J2 public double width;
J3 public double height;
J4 public Rectangle(Point center,
J5 double width, double height) {
J6 super(center);
J7 this.width = width;
J8 this.height = height;
J9 }

J10 @Override public String toString() {
J11 return "Rectangle(c=" + center + ", w=" +
J12 width + ", h=" + height + ")";
J13 }
J14 }

J15 Rectangle r = new Rectangle(
J16 new Point(10.0, 10.0), 5.0, 2.0);

Python

P1class Rectangle(BoardElement):
P2def __init__(self, center,
P3width, height):
P4BoardElement.__init__(self, center)
P5self.width = width
P6self.height = height

P7def __repr__(self):
P8return (
P9f"Rectangle(c={self.center}, "
P10f"w={self.width}, h={self.height})"
P11)

P12r = Rectangle(
P13Point(10.0, 10.0), 5.0, 2.0)

This example serves the discussion of two concepts: the definition of a custom
compound data type, and the basic introduction of class inheritance. They are
treated separately in the text below. (Note that this Java code is not idiomatic:
fields are typically private in Java with a public getter or setter as appropriate.
In Python, attributes are technically all public and, by convention, are prefixed
with one or two underscores to signal their non-publicness.)

The ability to define and use compound data types (i.e., a type constituted
from several basic types of the language and possibly other compound types)
is one of the first concrete steps of data modeling in a programming course.
Students get taught that certain values that belong together in order to model a
given entity should also “live” and “travel” together in code. In Java and Python,
the most obvious way to achieve that is by declaring new classes11.

Both the Java and the Python ways to declare a new class are relatively verbose
and contain seemingly redundant elements. Both languages have a new keyword
for it, class. In languages supporting class-based object orientation, classes are
such a central concept that contesting the relevance of that keyword cannot
be justified. The way to treat fields, constructors and constructor parameters,
however, is different. Java requires the explicit declaration of all fields, whereas in
Python, conventions dictate that the fields (referred to as attributes) be assigned
in the __init__ “constructor method”. Owing to its dynamic nature, Python
actually allows new attributes to be defined at later points of the lifetime of a
created instance with no prior declaration, whereas Java forbids it. Python is
consistent here with its treatment of attributes and its treatment of, say, local
variables: no declaration is needed. But in the perspective of basic data modeling,
the essence of the definition of a compound type is the identification of what
subparts it is made of. Java field definitions makes it clear, but Python makes it

11 In Python, one could also used namedtuples for cases where methods are not needed.
The data structures built this way, however, are immutable. Our take was not to skip
discussions over mutable data structures, an essential side of imperative programming
language.

9

Want to exemplify: struct-like class

data Rectangle = Rectangle Point Float FloatHaskell:
case class Rectangle(
 center: Point, width: Double, height: Double)

Scala:

@dataclass, namedtuple, TypedDict…Python:

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 4

18

Compound data types should be definable in a
syntactically light way and should clearly allow the

identification of their fields.

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 4

18

Compound data types should be definable in a
syntactically light way and should clearly allow the

identification of their fields.

MODELIZATION

ABSTRACTION

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

5. Manipulating numerical data

19

Excerpt 5. Manipulating data structures representing numerical data.
Java

J1 Vector3 v1 = new Vector3(1, 2, 3);
J2 Vector3 v2 = new Vector3(4, 5, 6);
J3 Vector3 v3 = v1.plus(v2).div(2);

J4 // Given a class similar to this (with a proper
J5 // toString() and equals() omitted here for brevity):
J6 public class Vector3 {
J7 public final double x, y, z;
J8 public Vector3(double x, double y, double z) {
J9 this.x = x; this.y = y; this.z = z;

J10 }
J11 public Vector3 plus(Vector3 v) {
J12 return new Vector3(x + v.x, y + v.y, z + v.z);
J13 }
J14 public Vector3 div(double d) {
J15 return new Vector3(x / d, y / d, z / d);
J16 }
J17 }

Python

P1from numpy import array

P2v1 = array([1, 2, 3])
P3v2 = array([3, 2, 1])
P4v3 = (v1 + v2) / 2

Lines J3 and P3 both compute in a 3D space, the vector v3 = v1+v2
2 . Java’s

impossibility to use arithmetic operators on custom types makes it impossible
not to use method calls to accomplish this. But Python makes it more legible
and writable by allowing operators (here in conjunction with a type defined
in the numpy library). Allowing operators has the added benefits of reproducing
the precedence rules we know from algebra, whereas, to the untrained eye,
distinguishing, e.g., v1.plus(v2).div(2) from v1.plus(v2.div(2)) is difficult and may
even be counterintuitive.

Note that the class definition in Java only serves to demonstrate how “arith-
metic methods” are achieved, not to artificially lengthen the Java code. Concep-
tually, one must understand that, in order for chained method calls (as on line
J3) to work, one needs to return an instance of the class, too. This in turns begs
more questions that are avoided by Python’s syntactic possibilities.

Another more difficult point of Java is equivalence checking: == denotes an
identity check rather than an equivalence check, which must explicitly be done by
means of the equals() method. It even gets trickier, because students rapidly get
used to using == for all basic types and even for instances of String—and, more
often than not, it actually works, since Java interns all strings literals compiled
together. It only bites them later. Python’s ==, on the other hand, calls the
method __eq__ on its left operand, thus allowing custom behavior via standard
syntax14. The same arguments can be made for the <, <=, >, and >= operators on
instances of data types which are ordered.

Desideratum 5. Common arithmetic, equality, and comparison operators should work
on compound data when relevant to ensure syntactic consistency with basic types.

syntactically, and code for equality, hash value, and string representation is generated
automatically (see https://docs.scala-lang.org/tour/case-classes.html).

14 Even if we all know that == is all but standard for beginners and that the confusion
with = is extremely common.

11

Want to exemplify: operations on non-basic numeric types

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

5. Manipulating numerical data

19

Excerpt 5. Manipulating data structures representing numerical data.
Java

J1 Vector3 v1 = new Vector3(1, 2, 3);
J2 Vector3 v2 = new Vector3(4, 5, 6);
J3 Vector3 v3 = v1.plus(v2).div(2);

J4 // Given a class similar to this (with a proper
J5 // toString() and equals() omitted here for brevity):
J6 public class Vector3 {
J7 public final double x, y, z;
J8 public Vector3(double x, double y, double z) {
J9 this.x = x; this.y = y; this.z = z;

J10 }
J11 public Vector3 plus(Vector3 v) {
J12 return new Vector3(x + v.x, y + v.y, z + v.z);
J13 }
J14 public Vector3 div(double d) {
J15 return new Vector3(x / d, y / d, z / d);
J16 }
J17 }

Python

P1from numpy import array

P2v1 = array([1, 2, 3])
P3v2 = array([3, 2, 1])
P4v3 = (v1 + v2) / 2

Lines J3 and P3 both compute in a 3D space, the vector v3 = v1+v2
2 . Java’s

impossibility to use arithmetic operators on custom types makes it impossible
not to use method calls to accomplish this. But Python makes it more legible
and writable by allowing operators (here in conjunction with a type defined
in the numpy library). Allowing operators has the added benefits of reproducing
the precedence rules we know from algebra, whereas, to the untrained eye,
distinguishing, e.g., v1.plus(v2).div(2) from v1.plus(v2.div(2)) is difficult and may
even be counterintuitive.

Note that the class definition in Java only serves to demonstrate how “arith-
metic methods” are achieved, not to artificially lengthen the Java code. Concep-
tually, one must understand that, in order for chained method calls (as on line
J3) to work, one needs to return an instance of the class, too. This in turns begs
more questions that are avoided by Python’s syntactic possibilities.

Another more difficult point of Java is equivalence checking: == denotes an
identity check rather than an equivalence check, which must explicitly be done by
means of the equals() method. It even gets trickier, because students rapidly get
used to using == for all basic types and even for instances of String—and, more
often than not, it actually works, since Java interns all strings literals compiled
together. It only bites them later. Python’s ==, on the other hand, calls the
method __eq__ on its left operand, thus allowing custom behavior via standard
syntax14. The same arguments can be made for the <, <=, >, and >= operators on
instances of data types which are ordered.

Desideratum 5. Common arithmetic, equality, and comparison operators should work
on compound data when relevant to ensure syntactic consistency with basic types.

syntactically, and code for equality, hash value, and string representation is generated
automatically (see https://docs.scala-lang.org/tour/case-classes.html).

14 Even if we all know that == is all but standard for beginners and that the confusion
with = is extremely common.

11

Want to exemplify: operations on non-basic numeric types

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

5. Manipulating numerical data

19

Excerpt 5. Manipulating data structures representing numerical data.
Java

J1 Vector3 v1 = new Vector3(1, 2, 3);
J2 Vector3 v2 = new Vector3(4, 5, 6);
J3 Vector3 v3 = v1.plus(v2).div(2);

J4 // Given a class similar to this (with a proper
J5 // toString() and equals() omitted here for brevity):
J6 public class Vector3 {
J7 public final double x, y, z;
J8 public Vector3(double x, double y, double z) {
J9 this.x = x; this.y = y; this.z = z;

J10 }
J11 public Vector3 plus(Vector3 v) {
J12 return new Vector3(x + v.x, y + v.y, z + v.z);
J13 }
J14 public Vector3 div(double d) {
J15 return new Vector3(x / d, y / d, z / d);
J16 }
J17 }

Python

P1from numpy import array

P2v1 = array([1, 2, 3])
P3v2 = array([3, 2, 1])
P4v3 = (v1 + v2) / 2

Lines J3 and P3 both compute in a 3D space, the vector v3 = v1+v2
2 . Java’s

impossibility to use arithmetic operators on custom types makes it impossible
not to use method calls to accomplish this. But Python makes it more legible
and writable by allowing operators (here in conjunction with a type defined
in the numpy library). Allowing operators has the added benefits of reproducing
the precedence rules we know from algebra, whereas, to the untrained eye,
distinguishing, e.g., v1.plus(v2).div(2) from v1.plus(v2.div(2)) is difficult and may
even be counterintuitive.

Note that the class definition in Java only serves to demonstrate how “arith-
metic methods” are achieved, not to artificially lengthen the Java code. Concep-
tually, one must understand that, in order for chained method calls (as on line
J3) to work, one needs to return an instance of the class, too. This in turns begs
more questions that are avoided by Python’s syntactic possibilities.

Another more difficult point of Java is equivalence checking: == denotes an
identity check rather than an equivalence check, which must explicitly be done by
means of the equals() method. It even gets trickier, because students rapidly get
used to using == for all basic types and even for instances of String—and, more
often than not, it actually works, since Java interns all strings literals compiled
together. It only bites them later. Python’s ==, on the other hand, calls the
method __eq__ on its left operand, thus allowing custom behavior via standard
syntax14. The same arguments can be made for the <, <=, >, and >= operators on
instances of data types which are ordered.

Desideratum 5. Common arithmetic, equality, and comparison operators should work
on compound data when relevant to ensure syntactic consistency with basic types.

syntactically, and code for equality, hash value, and string representation is generated
automatically (see https://docs.scala-lang.org/tour/case-classes.html).

14 Even if we all know that == is all but standard for beginners and that the confusion
with = is extremely common.

11

Excerpt 5. Manipulating data structures representing numerical data.
Java

J1 Vector3 v1 = new Vector3(1, 2, 3);
J2 Vector3 v2 = new Vector3(4, 5, 6);
J3 Vector3 v3 = v1.plus(v2).div(2);

J4 // Given a class similar to this (with a proper
J5 // toString() and equals() omitted here for brevity):
J6 public class Vector3 {
J7 public final double x, y, z;
J8 public Vector3(double x, double y, double z) {
J9 this.x = x; this.y = y; this.z = z;

J10 }
J11 public Vector3 plus(Vector3 v) {
J12 return new Vector3(x + v.x, y + v.y, z + v.z);
J13 }
J14 public Vector3 div(double d) {
J15 return new Vector3(x / d, y / d, z / d);
J16 }
J17 }

Python

P1from numpy import array

P2v1 = array([1, 2, 3])
P3v2 = array([3, 2, 1])
P4v3 = (v1 + v2) / 2

Lines J3 and P3 both compute in a 3D space, the vector v3 = v1+v2
2 . Java’s

impossibility to use arithmetic operators on custom types makes it impossible
not to use method calls to accomplish this. But Python makes it more legible
and writable by allowing operators (here in conjunction with a type defined
in the numpy library). Allowing operators has the added benefits of reproducing
the precedence rules we know from algebra, whereas, to the untrained eye,
distinguishing, e.g., v1.plus(v2).div(2) from v1.plus(v2.div(2)) is difficult and may
even be counterintuitive.

Note that the class definition in Java only serves to demonstrate how “arith-
metic methods” are achieved, not to artificially lengthen the Java code. Concep-
tually, one must understand that, in order for chained method calls (as on line
J3) to work, one needs to return an instance of the class, too. This in turns begs
more questions that are avoided by Python’s syntactic possibilities.

Another more difficult point of Java is equivalence checking: == denotes an
identity check rather than an equivalence check, which must explicitly be done by
means of the equals() method. It even gets trickier, because students rapidly get
used to using == for all basic types and even for instances of String—and, more
often than not, it actually works, since Java interns all strings literals compiled
together. It only bites them later. Python’s ==, on the other hand, calls the
method __eq__ on its left operand, thus allowing custom behavior via standard
syntax14. The same arguments can be made for the <, <=, >, and >= operators on
instances of data types which are ordered.

Desideratum 5. Common arithmetic, equality, and comparison operators should work
on compound data when relevant to ensure syntactic consistency with basic types.

syntactically, and code for equality, hash value, and string representation is generated
automatically (see https://docs.scala-lang.org/tour/case-classes.html).

14 Even if we all know that == is all but standard for beginners and that the confusion
with = is extremely common.

11

Want to exemplify: operations on non-basic numeric types

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

5. Manipulating numerical data

19

Excerpt 5. Manipulating data structures representing numerical data.
Java

J1 Vector3 v1 = new Vector3(1, 2, 3);
J2 Vector3 v2 = new Vector3(4, 5, 6);
J3 Vector3 v3 = v1.plus(v2).div(2);

J4 // Given a class similar to this (with a proper
J5 // toString() and equals() omitted here for brevity):
J6 public class Vector3 {
J7 public final double x, y, z;
J8 public Vector3(double x, double y, double z) {
J9 this.x = x; this.y = y; this.z = z;

J10 }
J11 public Vector3 plus(Vector3 v) {
J12 return new Vector3(x + v.x, y + v.y, z + v.z);
J13 }
J14 public Vector3 div(double d) {
J15 return new Vector3(x / d, y / d, z / d);
J16 }
J17 }

Python

P1from numpy import array

P2v1 = array([1, 2, 3])
P3v2 = array([3, 2, 1])
P4v3 = (v1 + v2) / 2

Lines J3 and P3 both compute in a 3D space, the vector v3 = v1+v2
2 . Java’s

impossibility to use arithmetic operators on custom types makes it impossible
not to use method calls to accomplish this. But Python makes it more legible
and writable by allowing operators (here in conjunction with a type defined
in the numpy library). Allowing operators has the added benefits of reproducing
the precedence rules we know from algebra, whereas, to the untrained eye,
distinguishing, e.g., v1.plus(v2).div(2) from v1.plus(v2.div(2)) is difficult and may
even be counterintuitive.

Note that the class definition in Java only serves to demonstrate how “arith-
metic methods” are achieved, not to artificially lengthen the Java code. Concep-
tually, one must understand that, in order for chained method calls (as on line
J3) to work, one needs to return an instance of the class, too. This in turns begs
more questions that are avoided by Python’s syntactic possibilities.

Another more difficult point of Java is equivalence checking: == denotes an
identity check rather than an equivalence check, which must explicitly be done by
means of the equals() method. It even gets trickier, because students rapidly get
used to using == for all basic types and even for instances of String—and, more
often than not, it actually works, since Java interns all strings literals compiled
together. It only bites them later. Python’s ==, on the other hand, calls the
method __eq__ on its left operand, thus allowing custom behavior via standard
syntax14. The same arguments can be made for the <, <=, >, and >= operators on
instances of data types which are ordered.

Desideratum 5. Common arithmetic, equality, and comparison operators should work
on compound data when relevant to ensure syntactic consistency with basic types.

syntactically, and code for equality, hash value, and string representation is generated
automatically (see https://docs.scala-lang.org/tour/case-classes.html).

14 Even if we all know that == is all but standard for beginners and that the confusion
with = is extremely common.

11

Excerpt 5. Manipulating data structures representing numerical data.
Java

J1 Vector3 v1 = new Vector3(1, 2, 3);
J2 Vector3 v2 = new Vector3(4, 5, 6);
J3 Vector3 v3 = v1.plus(v2).div(2);

J4 // Given a class similar to this (with a proper
J5 // toString() and equals() omitted here for brevity):
J6 public class Vector3 {
J7 public final double x, y, z;
J8 public Vector3(double x, double y, double z) {
J9 this.x = x; this.y = y; this.z = z;

J10 }
J11 public Vector3 plus(Vector3 v) {
J12 return new Vector3(x + v.x, y + v.y, z + v.z);
J13 }
J14 public Vector3 div(double d) {
J15 return new Vector3(x / d, y / d, z / d);
J16 }
J17 }

Python

P1from numpy import array

P2v1 = array([1, 2, 3])
P3v2 = array([3, 2, 1])
P4v3 = (v1 + v2) / 2

Lines J3 and P3 both compute in a 3D space, the vector v3 = v1+v2
2 . Java’s

impossibility to use arithmetic operators on custom types makes it impossible
not to use method calls to accomplish this. But Python makes it more legible
and writable by allowing operators (here in conjunction with a type defined
in the numpy library). Allowing operators has the added benefits of reproducing
the precedence rules we know from algebra, whereas, to the untrained eye,
distinguishing, e.g., v1.plus(v2).div(2) from v1.plus(v2.div(2)) is difficult and may
even be counterintuitive.

Note that the class definition in Java only serves to demonstrate how “arith-
metic methods” are achieved, not to artificially lengthen the Java code. Concep-
tually, one must understand that, in order for chained method calls (as on line
J3) to work, one needs to return an instance of the class, too. This in turns begs
more questions that are avoided by Python’s syntactic possibilities.

Another more difficult point of Java is equivalence checking: == denotes an
identity check rather than an equivalence check, which must explicitly be done by
means of the equals() method. It even gets trickier, because students rapidly get
used to using == for all basic types and even for instances of String—and, more
often than not, it actually works, since Java interns all strings literals compiled
together. It only bites them later. Python’s ==, on the other hand, calls the
method __eq__ on its left operand, thus allowing custom behavior via standard
syntax14. The same arguments can be made for the <, <=, >, and >= operators on
instances of data types which are ordered.

Desideratum 5. Common arithmetic, equality, and comparison operators should work
on compound data when relevant to ensure syntactic consistency with basic types.

syntactically, and code for equality, hash value, and string representation is generated
automatically (see https://docs.scala-lang.org/tour/case-classes.html).

14 Even if we all know that == is all but standard for beginners and that the confusion
with = is extremely common.

11

Want to exemplify: operations on non-basic numeric types

hashCode()!

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 5

20

Common arithmetic, equality, and comparison operators
should work on compound data when relevant to

ensure syntactic consistency with basic types.

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Desideratum 5

20

Common arithmetic, equality, and comparison operators
should work on compound data when relevant to

ensure syntactic consistency with basic types.

NUMERIC DATA

MANIPULATION

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Outline

1. Introduction & context

2. Comparison of excerpts & desiderata

3. Conclusion

21

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Conclusion

• A pleasure not to have to defer explanations

• Code almost always shorter

• Data manipulation easier

— Couldn’t help but change the Python course

• Less time spent on lower-level details, more time for higher-
level abstraction

• Same exam for all, no statistically significant difference

— But: the Python course taught more!

22

ISSEP 2019Pellet et al., How beginner-friendly is a programming language?

Thank you!

23

Q&A, or…

… guided tour & dinner!

