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Traditional Methods

Rely on incorrect assumptions

* Normality (e.qg., t test for sample size calculation in clinical trials).
* Proportional hazard (e.g., survival data analysis).
e Strong parametric assumption (e.g., Poisson for count data).

Oversimplify framework

* Homogeneous population.
e Compare survival outcomes only based on firstling therapy,
ignoring the subsequent savage treatments.
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Why Bayesian Nonparametrics (BNP)?

e Bayesian
P(parameters|data) oc P(data|parameters)P(parameters)

* BNP: Bayesian models that are not parametric
(unbounded/growing/infinite number of parameters)

Advantages:

Uncertainty quantification (e.g., small sample size, decision making)
Nonparametric

Wide support

Flexible
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 Part 1: Monday
* Density estimation for efficient clinical trial designs
* Regression for precision dosing

e Part 2: Wednesday

e Clustering for subgroup finding
 Latent feature models for tumor heterogeneity

e Part 3: Friday

 Estimating treatment effects from observational data
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Pulmonary resection

Intraoperative air leaks (IALSs)
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® Routine use: sutures and stapling devices

® Risks: postoperative pain, infections, longer hospitalization,
economic, etc

e New way: Progel (liquid sealants)



Motivating Trial

Goal: design a randomized trial comparing

Progel versus standard care!



Motivating Trial

Goal: design a randomized trial comparing

Progel versus standard care!

0 10 20 30 40

Air Leak Length



Motivating Trial

Goal: design a randomized trial comparing

Progel versus standard care!

. e mean=8, sd=8.76

0 10 20 30 40

Air Leak Length



Motivating Trial

Goal: design a randomized trial comparing

Progel versus standard care!

¢ e mean=8, sd=8.76

* a two sample one-sided 0.05-level t
test with power 0.8 to detect a 25%

© - drop, would require n = 476.

Ul [ [ s

I I I I I
0 10 20 30 40

Air Leak Length



Motivating Trial

Goal: design a randomized trial comparing

Progel versus standard care!

10

e mean=8, sd=8.76

* a two sample one-sided 0.05-level t
test with power 0.8 to detect a 25%

© - drop, would require n = 476.

= * log scale mean = 1.61 and sd = 0.97,

it would require n = 280.

JWlplm [ [

0 10 20 30 40

Air Leak Length



Motivating Trial

Goal: design a randomized trial comparing

Progel versus standard care!

10

e mean=8, sd=8.76

* a two sample one-sided 0.05-level t
test with power 0.8 to detect a 25%

© - drop, would require n = 476.

= * log scale mean = 1.61 and sd = 0.97,

it would require n = 280.

JWlplm [ [

0 10 20 30 40

Air Leak Length

Standard parametric model is INAPPROPRIATE!
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* Free of air leaks immediately following surgery is possible.
o Consider the distribution of the time to resolve an air leak Gj as a

mixture:

G;=vdy+ (1 = )M, j = 0,1.

o M, is a left-shifted version of M,,.

* Progel is inert, it cannot react chemically with the patient’s lung
tissue

* not a potential source of infection

* does not slow down the healing process

e does not contribute to air leak formation
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Stochastic ordering on G, and Gg: Progel may be
better, but not worse.
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T the time (in days) to resolve an air leaks. Define Y = log(T + 1).

U; = j(dY), j=0,1

Utility

Trial Design: Pr(U, > U, + € | Data)
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Utility Considerations

A formal utility elicitation with our clinical collaborator. Both medical
and economic:
e the most desirable resolution time is T = 0 (free of air leaks
immediately after surgery, although this ideal outcome is almost
never seen with standard care).

e early (1 < T < 5) resolution of air leaks is very desirable and
therefore the interval [1, 5] received a relatively high utility.

e the utilities drop off steeply for later resolution times (T > J).

T(days)| 0 5 10 15 20 25 30 35 > 40
Utility | 100 50 10 6 5 4 3 2 0
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Dirichlet Process (DP)

The most commonly used BNP prior p(F') for a random
probability measure (Ferguson, 1973):

F ~ DP(a, Fy) with F(y) = )" w;,, ().
h=1

e Locations: my, ~ F, i.i.d.

Weights: w;, = v, | [ (1 = v)) with v, ~ beta(1,a).
[<h

Stick-breaking
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Dirichlet Process (DP)

Parameters:
e base measure: Fj,(A) = E{F(A)}
o total mass a: F(A) ~ beta(aF,(A), aFy(A°)).

Posterior Inference:
o Likelihood: p(y | F) =F
e Prior: ' ~ DP(a, Fy)

o Posterior: p(F | y) = DP(a + 1,F*) with
aF,+ o,
F* =

a+ 1
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e DP random measure: discrete I is not appropriate for many
problems

e DP mixture (DPM): convolution of discrete F’ with
(continuous) kernel, e.g., normal (Escobar & West, 1995)

G(y) = JN(y 0, 62)dF(#), F ~ DP

o0
-2



Probability Model — o

DENSITY
0 ;IO

0.95

| |
0 10 20 30 40
TIME TO RESOLUTION

(a)
GO and Gl



Probability Model 3t S —

- - G1 (PROGEL)

0.15

DENSITY
0 l10

h=1

0.95

0.?0

| |
0 10 20 30 40
TIME TO RESOLUTION

(a)
GO and Gl



Probability Model 4 S —

- - G1 (PROGEL)

0.15

DENSITY
0 l10

h=1

= 1,480 + (1 = 1) ), N, 0%)
h=1

0.?5

0.?0

| |
0 10 20 30 40
TIME TO RESOLUTION

(a)
GO and Gl



Probability Model 4 S —

- - G1 (PROGEL)

0.15

DENSITY
0 l10

h=1

= 1,680 + (1 = vjg) ), N, 0%)
h=1

0.?5

0.?0

| |
0 10 20 30 40
TIME TO RESOLUTION

(a)
GO and Gl



Probability Model 4 S —

- - G1 (PROGEL)

0.15

DENSITY
0 l10

h=1 3 _
m o
_ 2
= 1,680 + (1 = vjg) ), N, 0%) . |
h=1 T3 e
TIME TO RESOLUTION
= ;0 + (1 — )M, (2)

GO and Gl



Probability Model 4 S —

- - G1 (PROGEL)

0.15

DENSITY
0 l10

h=1 3 _
m (=
— 2
= 1,680 + (1 = vjg) ), N, 0%) . |
h=1 ) 0 10 20 30 40
TIME TO RESOLUTION
— I/j050 + (1 — I/jo)% (a)

\ GO and Gl

DP Mixtures



Probability Model

DENSITY
0 l10

h=1

0.95

0.?0

— GO (CONTROL)
- G1 (PROGEL)

= 1,680 + (1 = vjg) ), N, 0%)
h=1

—_ jOéO + (1 — I/jo)%

\

DP Mixtures

Further prior beliefs can be added.

10 20 30
TIME TO RESOLUTION
(a)
G() and G 1

40



e BNP

U-:/u(v), j=0,1

S —— GO (CONTROL) =
- = G1 (PROGEL) o
: ] 2
8- 7
% = E o %
Zs =8 g« /
B 5 > %
g T o é
° il
: _—1
0 20 310 4[0 (I) 1I0 2|0 3I0 4I0 CTR PRG
TIME TO RESOLUTION TIME TO RESOLUTION
(@) (b) (©
Go and Gy X utilities u — U.

Trial Design: Pr(U, > U, + ¢ | Data)

Xu et al., 2017



Simulation Study: Setup

Yii ~ 0.8N(1.5,0.3%) + 0.2N(3,0.3%),j = 0
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Take-home Messages

e BNP utility-based trial designs.

® The utility function 1s only meaningful if the probability
model allows learning about detailed features of the event
time distribution, and the nonparametric model 1s only
needed when the decision hinges on such details.

® Novelties
® a small-scale trial design (n=48).

® a convincing case for the need of a full probabilistic
description of uncertainties on random probability
measures
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* Regression for precision dosing
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Background

Allogeneic Stem Cell Transplantation (alloSCT) 1s an aggressive

therapy for various hematologic diseases, such as lymphocytic
leukemia and non-Hodgkins lymphoma.
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Background

Systemic busulfan exposure, characterized by area under the
plasma concentration curve, AUC = the delivered dose, 1s
strongly associated with clinical outcome.

e AUC too high = High risks of severe toxicity.

e AUC too low = High risks of graft failure and disease
recurrence.

® Earlier practice: busultan orally, resulting in 10 to 20 times the
variability in AUC. Hard to control

® Current practice: busulfan intravenous (IV), improving its
bioavailability and delivered dosing accuracy
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Background

Cox proportional hazard model (details later):

Log Hazard of Death
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Andersson et al. (2002) estimated an optimal AUC range (950 to
1520 uMol-min)

Bartelink et al. (2016) reported an optimal AUC range (19100 to
21200 uMol-min) when treating children and young adults.
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Personalizing Targeted IV Busulfan Dose

Age and disease status at alloSCT (CR = Complete Remission, No
CR = Active Disease) are strongly predictive of T = survival time.

Can the optimal AUC interval be personalized using (Age, CR) to
maximize E(T | Age, CR, AUC) ?

Historical Data: 151 alloSCT patients who received a standard 4-
day preparative regimen of IV busulfan.
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Challenges and Potential Benefits

Challenges in this Statistical Analysis

e Modeling p(T | Age, CR, AUC) robustly.

® [dentifying and characterizing possibly nonlinear [Age x AUC ] or
[CR xAUC] or [Age XCR xAUC] interactive effects on 7.

® The historical dataset has only 151 patients.

Potential Payoff of this Statistical Analysis

If optimal AUC 1intervals based on (Age, CR) can be
estimated, E(T | Age, CR, AUC) can be increased for future
patients by making this personalized IV busultfan dosing in
alloSCT standard clinical practice.



Traditional Survival Models

Event time data, usually involving censoring.
e Survival time: T
e Censoring time: C
e Censoring indicator: 06 = I(T < C)
e Observed data: (Y, C, 0), where Y = min(T, C)
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Traditional Survival Models

e Survival function: S(¢) = Pr(T > 1).
d d
D ity: f(t) = ——|[1 — F(t)] = — —5(1).
o Density: f(7) dt[ ()] 7 ()
e Hazard function:
Prt <T<t+d) ft)
dS(1) YOR

¢ Cumulative hazard function:
A

A(t) = J AMu)du = —1og S(1) .
0

A1) = limy,
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Traditional Survival Models

== All

Kaplan—Meier estimator &os

0.11 _|

0.0-
AN dz o 1 2 3 4 5 6 7 8 9 10
S(t) = 1
Number at risk (number censored)
T;

1 t; <t Al 10(0) 9(0) 7(0) 5(0) 3(0) 10)

1;: time when at least one event happened

d;: the number of events (e.g., death) that happened at time 7,

n;: the individuals known to have survived (have not yet had an event
or been censored) up to time ¢,
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Traditional Survival Models

® Cox Proportional Hazards (PH) model:
S (1) = So(t)PP)

® In terms of hazards, this model reduces to

h(t) = hy(D)exp(x’p)

Note then that for two individuals with covariates x; and x,, the

ratio of hazard curves is constant, equal to exp((x; — x,)'f3),
hence the name “proportional hazards.”
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Traditional Survival Models
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Cox Proportional Hazards (PH) model 1s not appropriate!
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Traditional Survival Models

® Accelerated Failure Time (AFT) model:

S.(f) = Sy{exp(—x'p)t}

® This 1s equivalent to a linear model for the log time-to-
event 71,

log(T) = x'f + €, where p(e > logt) = §y(¥) .
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Dependent DP (DDP)

F(y | X) = ), wN(; %), %)
h=1
* Include regression on covariates by assuming
0,(X) = Xp,
* A Gaussian process (GP) prior for 0,(X) gives the DDP-
GP. 0,(X) ~ GP(u,, C) with u,(X;; py) = X, [, for

i=1,....nand h = 1,2,..., with variance-covariance
matrix
D
r Z,' L Z 2 )
C(Z,', Zg) — 0'8 exp — Z ( d )\g Ed) o T+ 5,‘@./2.
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Model Summary

Data: Y, = log survival time, X; = (Age,, CR;, AUC)) of patient
1= 1,...,151

Distribution: p(y; | X, F) = Fx(y;)

Prior: Iy ~ DDP — GP({u,},C, a, {5,}, 14,4}, ag, c°)

For right-censored survival data D, = {Y}, 6;, X;}'_, the likelihood
function has the usual form

LO | D) = [ [ A 1 0)}(1 - Fy(Y; | )}~
=1



Estimated Optimal Targeted Intervals of |V Busulfan AUC
Personalized For Given (CR Status, Age)

We define the predicted optimal IV busulfan targeted AUC for
future patient n+ 1 with covariates X = (CR Status, Age, AUC) as

A/(E,H_l — argmaxayc E(Yn_|_1 ‘ X,Dn)

Since the laboratory error in evaluation of AUC is up to about 6%,
the optimal AUC interval for future patient n+ 1 is defined as

[0.9 AUCpy1, 1.1 AUC,i1 |



Simulation Study: Setup

@ Age: x; and AUC: x» were sampled with replacement from the
actual ages and AUC values.

o CR: x3 ~ Bernoulli(0.5).
o Survival: T ~ LN(u(x;),08), where o9 = 0.4, and

,u(x,-) = 4 — 0.1X,"1 -+ O.7X,',2 + 0.3X,',3 — O.O7Xi2’2 — 0.1X,',1X,'72
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@ Two scenarios: n = 200 observations without censoring and n
= 200 with 25% censoring.
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Simulation Study: Setup

@ Age: x; and AUC: x» were sampled with replacement from the
actual ages and AUC values.

o CR: x3 ~ Bernoulli(0.5).
o Survival: T ~ LN(u(x;),08), where o9 = 0.4, and

,u(x,-) = 4 — 0.1X,"1 -+ O.7X,',2 + 0.3X,',3 — 0.1X,',1X,'72
#0.26235 ~PABxuxiaxis|

@ Two scenarios: n = 200 observations without censoring and n
= 200 with 25% censoring.
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Simulation Study

Comparison

® AFT regression models using either lognormal or Weibull distributions
by assuming

log(Yi) = Bo+ Bixi1+ Boxiz + Baxiz + Baxis + Bsxiixio
+BeXi 2Xi 3 + B7Xi1X; 3 + O€;.

e Two flexible semiparametric survival methods: model the baseline
survival using

® a Polya Trees (PT) prior (Hanson and Johnson, 2002)

® a transformed Bernstein polynomials (TBP) prior (Zhou and Hanson,
2018)

® Two nonparametric survival methods
e random forests (RF) (Ishwaran et al., 2008)
e Bayesian additive regression trees (BART) (Sparapani et al., 2016)



Simulation Study
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Simulation Study

Mean survival
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Simulation Study

n=200 with 25% censoring

Mean survival
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Data Analysis

Kaplan Meier Plots
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Data Analysis

AUC=5
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Optimal AUC

20 30 40 50 60

Age

® The optimal targeted busultfan dose interval goes down with Age.

® For Age < 30, the optimal targeted IV busulfan dose intervals are identical
for patients in CR or with active disease (no CR).

® For Age > 30, the optimal targeted dose intervals for [CR = No] are well
below the intervals for [CR = Yes], with complete separation for Age > 55.

Xu et al., 2019
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® This precision IV busulfan dosing may be applied worldwide 1n
alloSCT to improve survival.

® The DDP-GP model 1s a tool for robust Bayesian nonparametric
survival regression analysis that may be applied widely.

The R package DDPGPSurv can be downloaded from
https://cran.r-project.org/web/packages/DDPGPSurv/index.html



