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Rely on incorrect assumptions

• Normality (e.g., t test for sample size calculation in clinical trials).
• Proportional hazard (e.g., survival data analysis).
• Strong parametric assumption (e.g., Poisson for count data).

Traditional Methods

Oversimplify framework

• Homogeneous population.
• Compare survival outcomes only based on firstling therapy, 

ignoring the subsequent savage treatments. 
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Advantages:

• Uncertainty quantification (e.g., small sample size, decision making)
• Nonparametric
• Wide support
• Flexible

• Bayesian
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Why Bayesian Nonparametrics (BNP)? 

Figure 9: Comparison of ITR vs. pop model predictions on two example trajectories for creatinine
level. The black points are measurements in the training set and red points are measure-
ments in the test set The dashed lines are the predicted baseline progressions and the
solid lines are the final predictions of the creatinine levels. Prescriptions of treatments
are shown as vertical dashed lines. Treatment response curves are plotted on the right of
the trajectory predictions. Ribbons denote the 95% credible intervals. Heat maps with
the colors light yellow (renal SOFA of 0) to red (renal SOFA of 4) are plotted above the
trajectory predictions.
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Intraoperative air leaks (IALs) 
occur in 48 to 75% of patients.

Motivating Trial
Pulmonary resection 

•Routine use: sutures and stapling devices 

•Risks: postoperative pain, infections, longer hospitalization, 
economic, etc 

•New way: Progel (liquid sealants) 



Motivating Trial
Goal: design a randomized trial comparing 
                              Progel versus standard care! 
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Motivating Trial
Goal: design a randomized trial comparing 
                              Progel versus standard care! 

•mean=8, sd=8.76
• a two sample one-sided 0.05-level t 

test with power 0.8 to detect a 25% 
drop, would require n = 476. 

• log scale mean = 1.61 and sd = 0.97, 
it would require n = 280. 

Standard parametric model is INAPPROPRIATE!!  



Modeling Considerations



Modeling Considerations

• Free of air leaks immediately following surgery is possible. 



Modeling Considerations

• Free of air leaks immediately following surgery is possible. 
• Consider the distribution of the time to resolve an air leak  as a 

mixture: 
Gj

 Gj = νjδ0 + (1 − νj)Mj, j = 0,1.



Modeling Considerations

• Free of air leaks immediately following surgery is possible. 
• Consider the distribution of the time to resolve an air leak  as a 

mixture: 
Gj

 Gj = νjδ0 + (1 − νj)Mj, j = 0,1.
•  is a left-shifted version of . M1 M0



Modeling Considerations

• Free of air leaks immediately following surgery is possible. 
• Consider the distribution of the time to resolve an air leak  as a 

mixture: 
Gj

 Gj = νjδ0 + (1 − νj)Mj, j = 0,1.
•  is a left-shifted version of . M1 M0
• Progel is inert, it cannot react chemically with the patient’s lung 

tissue



Modeling Considerations

• Free of air leaks immediately following surgery is possible. 
• Consider the distribution of the time to resolve an air leak  as a 

mixture: 
Gj

 Gj = νjδ0 + (1 − νj)Mj, j = 0,1.
•  is a left-shifted version of . M1 M0
• Progel is inert, it cannot react chemically with the patient’s lung 

tissue
• not a potential source of infection



Modeling Considerations

• Free of air leaks immediately following surgery is possible. 
• Consider the distribution of the time to resolve an air leak  as a 

mixture: 
Gj

 Gj = νjδ0 + (1 − νj)Mj, j = 0,1.
•  is a left-shifted version of . M1 M0
• Progel is inert, it cannot react chemically with the patient’s lung 

tissue
• not a potential source of infection
• does not slow down the healing process 



Modeling Considerations

• Free of air leaks immediately following surgery is possible. 
• Consider the distribution of the time to resolve an air leak  as a 

mixture: 
Gj

 Gj = νjδ0 + (1 − νj)Mj, j = 0,1.
•  is a left-shifted version of . M1 M0
• Progel is inert, it cannot react chemically with the patient’s lung 

tissue
• not a potential source of infection
• does not slow down the healing process 
• does not contribute to air leak formation 
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Motivation Utilities and Trial Design Probability Model Simulation Conclusion

Utility

T : the time(in days) to resolve an air leaks. Define
Y = log(T + 1).
A formal utility elicitation with our clinical collaborator RM. Both
medical and economic:

the most desirable resolution time is T = 0 (free of air leaks
immediately after surgery, although this ideal outcome is
almost never seen with standard care)

early (1  T  5) resolution of air leaks is very desirable and
therefore the interval [1, 5] received a relatively high utility

the utilities drop o↵ steeply for later resolution times (T > 5).

T (days) 0 5 10 15 20 25 30 35 � 40
Utility 100 50 10 6 5 4 3 2 0

Utility Considerations
A formal utility elicitation with our clinical collaborator. Both medical 
and economic: 
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• Locations: , i.i.d. mh ∼ F0
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Parameters:  
• base measure: 

• total mass : .

F0(A) = E{F(A)}
α F(A) ∼ beta(αF0(A), αF0(Ac))

Posterior Inference: 
• Likelihood: 

• Prior: 

• Posterior:  with              

.

p(y ∣ F) = F
F ∼ DP(α, F0)

p(F ∣ y) = DP(α + 1,F*)

F* =
αFo + δy

α + 1

Dirichlet Process (DP)
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F

F

G(y) = ∫ N(y ∣ θ, σ2)dF(θ), F ∼ DP

=
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∑
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whN(mh, σ2)
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Probability Model

Gj = νj0δ0 +
∞

∑
h=1

νjhN(θjh, σ2)

= νj0δ0 + (1 − νj0)Mj

= νj0δ0 + (1 − νj0)
∞

∑
h=1

whN(θjh, σ2)

DP Mixtures

Further prior beliefs can be added. 



Motivation Utilities and Trial Design Probability Model Simulation Conclusion

Key Idea

Ūj =

Z
u(Y )Gj(dY ), j = 0, 1,

Overview BNP

Pr(Ū1 > Ū0 + ϵ ∣ Data)Trial Design:

Utility

Xu et al., 2017



Simulation Study: Setup

Motivation Utilities and Trial Design Probability Model Simulation Conclusion

Model Assessment Simulation

Yji ⇠ 0.8N(1.5, 0.32) + 0.2N(3, 0.32), j = 0

Yji ⇠ 0.8N(1, 0.32) + 0.2N(2.5, 0.32), j = 1

.
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Simulation Study: Results
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Take-home Messages

• BNP utility-based trial designs.

• The utility function is only meaningful if the probability 
model allows learning about detailed features of the event 
time distribution, and the nonparametric model is only 
needed when the decision hinges on such details. 

• Novelties

• a small-scale trial design (n=48). 

• a convincing case for the need of a full probabilistic 
description of uncertainties on random probability 
measures



Outline
• Part 1: Monday 
• Density estimation for efficient clinical trial designs

• Regression for precision dosing


• Part 2: Wednesday 
• Clustering for subgroup finding

• Latent feature models for tumor heterogeneity


• Part 3: Friday

• Estimating treatment effects from observational data
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• AUC too high ⇒ High risks of severe toxicity. 

• AUC too low ⇒ High risks of graft failure and disease 
recurrence. 

• Earlier practice: busulfan orally, resulting in 10 to 20 times the 
variability in AUC. Hard to control

• Current practice: busulfan intravenous (IV), improving its 
bioavailability and delivered dosing accuracy 
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 Andersson et al. (2002) estimated an optimal AUC range (950 to 
1520 Mol-min)μ

 

Bartelink et al. (2016) reported an optimal AUC range (19100 to 
21200 Mol-min) when treating children and young adults.μ

Background
Cox proportional hazard model (details later): 
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Historical Data: 151 alloSCT patients who received a standard 4-
day preparative regimen of IV busulfan. 
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Challenges and Potential Benefits
Challenges in this Statistical Analysis 

• Modeling Age, CR, AUC) robustly. p(T ∣
• Identifying and characterizing possibly nonlinear [Age × AUC ] or 

[CR ×AUC] or [Age ×CR ×AUC] interactive effects on . T

• The historical dataset has only 151 patients. 

Potential Payoff of this Statistical Analysis 

If optimal AUC intervals based on (Age, CR) can be 
estimated, Age, CR, AUC) can be increased for future 
patients by making this personalized IV busulfan dosing in 
alloSCT standard clinical practice. 

E(T ∣



Traditional Survival Models

Event time data, usually involving censoring. 

• Survival time: 

• Censoring time: 

• Censoring indicator: 

• Observed data: , where 

T
C

δ = I(T ≤ C)
(Y, C, δ) Y = min(T, C)
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Traditional Survival Models

• Density: f(t) = −
d
dt

[1 − F(t)] = −
d
dt

S(t) .

• Hazard function: 

λ(t) = limdt→0
Pr(t ≤ T < t + dt)

dtS(t)
=

f(t)
S(t)

.

• Cumulative hazard function: 

Λ(t) = ∫
t

0
λ(u)du = − log S(t) .

• Survival function: S(t) = Pr(T > t) .
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Traditional Survival Models

Kaplan–Meier estimator


: time when at least one event happened

: the number of events (e.g., death) that happened at time 

: the individuals known to have survived (have not yet had an event 

or been censored) up to time 

ti
di ti
ni

ti
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• Cox Proportional Hazards (PH) model: 

Sx(t) = S0(t)exp(x′￼β)

• In terms of hazards, this model reduces to

hx(t) = h0(t)exp(x′￼β)

Note then that for two individuals with covariates  and , the 
ratio of hazard curves is constant, equal to , 
hence the name “proportional hazards.” 

x1 x2
exp((x1 − x2)′￼β)
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Cox Proportional Hazards (PH) model is not appropriate!
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• Accelerated Failure Time (AFT) model:

Sx(t) = S0{exp(−x′￼β)t}

• This is equivalent to a linear model for the log time-to-
event T, 

log(T ) = x′￼β + ϵ, where p(ϵ > log t) = S0(t) .

Traditional Survival Models
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F(y ∣ X) =
∞

∑
h=1

whN(y; θh(X), σ2)

• Include regression on covariates by assuming 
. θh(X) = Xβh

• A Gaussian process (GP) prior for  gives the DDP-
GP.  with  for 

 and with variance-covariance 
matrix  

θh(X)
θh(X) ∼ GP(μh, C) μh(Xi; βh) = Xiβh

i = 1,…, n h = 1,2,…,

1 MacEachern (1999) included regression on covariates Z by
replacing each ✓h with a function ✓h(Z ) = Z�h, the
Dependent Dirichlet process (DDP)

F (y | Z ) =
1X

h=1

wh N(y ; ✓h(Z ),�2).

2 A Gaussian process (GP) prior for ✓h(Z ) gives the DDP-GP.
✓h(Z ) ⇠ GP(µh,C ) with µh(Zi ;�h) = Zi�h for i = 1, · · · , n
and h = 1, 2, · · · , with variance-covariance matrix

C (Zi ,Z`) = �2
0 exp

⇢
�

DX

d=1

(Zid � Z`d)2

�2
d

�
+ �i`J

2.

Dependent DP (DDP)



Model Summary



Model Summary
Data:  = log survival time,  of patient 

 
Yi Xi = (Agei, CRi, AUCi)

i = 1,…,151



Model Summary
Data:  = log survival time,  of patient 

 
Yi Xi = (Agei, CRi, AUCi)

i = 1,…,151

Distribution:  p(yi ∣ Xi, F) = FXi
(yi)



Model Summary
Data:  = log survival time,  of patient 

 
Yi Xi = (Agei, CRi, AUCi)

i = 1,…,151

Distribution:  p(yi ∣ Xi, F) = FXi
(yi)

Prior:  FX ∼ DDP − GP({μh}, C, α, {βh}, {λd}, σ2
0 , σ2)



Model Summary
Data:  = log survival time,  of patient 

 
Yi Xi = (Agei, CRi, AUCi)

i = 1,…,151

Distribution:  p(yi ∣ Xi, F) = FXi
(yi)

Prior:  FX ∼ DDP − GP({μh}, C, α, {βh}, {λd}, σ2
0 , σ2)

For right-censored survival data , the likelihood 
function has the usual form

Dn = {Yi, δi, Xi}n
i=1

L(θ ∣ Dn) =
n

∏
i=1

{fXi
(Yi ∣ θ)}δi{1 − FXi

(Yi ∣ θ)}1−δi



Estimated Optimal Targeted Intervals of IV Busulfan AUC
Personalized For Given (CR Status, Age)

We define the predicted optimal IV busulfan targeted AUC for
future patient n+1 with covariates X = (CR Status, Age, AUC) as

[AUCn+1 = argmaxAUC E (Yn+1 | X ,Dn)

Since the laboratory error in evaluation of AUC is up to about 6%,
the optimal AUC interval for future patient n + 1 is defined as

[ 0.9 [AUCn+1, 1.1 [AUCn+1 ]



Simulation Study: Setup
Simulation Studies

Simulation setup:

Age: x1 and AUC: x2 were sampled with replacement from the
actual ages and AUC values.

CR: x3 ⇠ Bernoulli(0.5).

Survival: T ⇠ LN(µ(xi ),�2
0), where �0 = 0.4, and

µ(xi ) = 4� 0.1xi ,1 + 0.7xi ,2 + 0.3xi ,3 � 0.07x2i ,2 � 0.1xi ,1xi ,2

+0.2xi ,2xi ,3 � 0.18xi ,1xi ,2xi ,3

Two scenarios: n = 200 observations without censoring and n

= 200 with 25% censoring.
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Age: x1 and AUC: x2 were sampled with replacement from the
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n=200 with 25% censoring
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Data Analysis
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• The optimal targeted busulfan dose interval goes down with Age. 

• For Age ≤ 30, the optimal targeted IV busulfan dose intervals are identical 
for patients in CR or with active disease (no CR).

• For Age > 30, the optimal targeted dose intervals for [CR = No] are well 
below the intervals for [CR = Yes], with complete separation for Age > 55. 
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• This precision IV busulfan dosing may be applied worldwide in 
alloSCT to improve survival.

• The DDP-GP model is a tool for robust Bayesian nonparametric 
survival regression analysis that may be applied widely. 

The R package DDPGPSurv can be downloaded from 
https://cran.r-project.org/web/packages/DDPGPSurv/index.html 
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