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Outline
• Part 1: Monday 
• Density estimation for efficient clinical trial designs

• Regression for precision dosing


• Part 2: Wednesday 
• Clustering for subgroup finding

• Latent feature models for tumor heterogeneity


• Part 3: Friday

• Estimating treatment effects from observational data
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One-size Fits All Cancer Treatment 



Targeted Therapy 

Introduction IMPACT II Decision Problem Model Simulation

Targeted Therapy

Introduction IMPACT II Decision Problem Model Simulation

Targeted Therapy

Introduction IMPACT II Decision Problem Model Simulation

Targeted Therapy

Lung%Cancer%

Erlo.nib%



Genomic-driven Cancer Trials 

Umbrella Trials 

in one single cancer type,  
test the effect of targeted 
agents on different alterations.

Basket Trials
across multiple cancer 
types, test the effect of 
targeted agents on the same 
genomic alternations. 
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Motivation Trial: IMPACT II 

• Clinical Trial: study of targeted agents in metastatic cancers. 
• Patients: with metastatic cancer (thyroid, ovarian, melanoma, 

lung, breast, CRC and other) 
• Treatments: therapy that targets particular molecular 

aberrations (TT) vs. standard of care (S)
• Population: heterogeneous population; different mutations; 

different cancers; baseline covs . . . Treatment might be 
effective in a sub-population 



Motivation Trial: IMPACT II 

Objective: determine the subpopulation that achieves the 
maximum benefit from TT.

EGFR KRAS TP53
Lung Cancer
Colon Cancer

We will cast this goal as a decision problem. 



Subpopulation Finding: Decision Problem

• Outcome: progression free survival (PFS) time, 



• Action: report a subgroup of patients who might benefit 
from the TT. A set of mutation-tumor pairs,





yi, i = 1,…, n

A = {a : a = ( ja, ca)}

• : Molecular aberration

• : tumor type 

ja = {1,…, q}
ca ∈ {1,…, nc}

{(KRAS, Lung), (TP53, Breast)}



Subpopulation Finding: Decision Problem
• Action: report a subgroup of patients who might benefit 

from the TT. A set of mutation-tumor pairs,



A = {a : a = ( ja, ca)}

A⇤ = argmaxA
R
u(A, ✓)p(✓ | y,X)d✓Bayes Rule:

Utility: we favor a subpopulation with difference in log hazards ratio 
(LR) and large size



Data from IMPACT

• Outcome:  progression free survival times, 

• Covariates:  

• Tumor type  (categorical)

• Molecular aberrations  (binary)

• Other baseline covariates  (age, # prior therapies, 

etc)


yi
xi = (ci, mi, bi)

ci
mi = (mi1, …, miM)

bi



Challenges

Probability model needs to allow for:
• interactions of covariates
• heterogeneous population
• missing data
• Extrapolation with small # observations

BNP!



Random Partition

•  be cluster membership indicators, 

•

s = (s1, …, sn)
si ∈ {1,…, J}
Sj = {i : si = j}

Product partition model:  p(s) ∝
J

∏
j=1

c(Sj)

For DP, c(Sj) = α( |Sj | − 1)!



Random Partition

•  be cluster membership indicators, 

•
•  by cluster

s = (s1, …, sn)
si ∈ {1,…, J}
Sj = (i : si = j)
x*j

Product partition model with covariates (PPMx):

  p(s ∣ x) ∝
J

∏
j=1

c(Sj)g(x*j )

Favors clusters homogeneous in  with  scoring 
similarity of .

 

xi g(x*j )
x*j = {i : si = j}

Mueller et al. (2011 JCGS), Quintana et al. (2015  StandJS)



Similarity function: over observed covariates only

  g(x*j ) =
p

∏
l=1

gl({xil, i ∈ Sj and xil observed}

Sampling model: exchangeable within clusters (e.g., 
lognormal regression model)

  p(y ∣ s, x, η) =
J

∏
j=1

∏
i∈Sj

p(yi ∣ ηj)



Results

ulation A0 as the top subpopulation report with the largest utility U0(A). Post-analysis, we

report A? by (4.3).

In each scenario, we compute the percentage of trials in which each subgroup a is reported:

Pr(a) =
1

100

X

h

I(a 2 A?).

That is, Pr(a) are estimated (frequentist) probabilities over repeat simulations and h indexes

each simulation. Figure 3 shows Pr(a), that is A? (right panel in each pair of panels), versus

the simulation truth U0(A) (left panel).
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Figure 3: In each scenario, the left panel shows the simulation truth. Blue cells represent

mutation-tumor pairs with treatment e↵ect di↵erent from the overall population under the

simulation truth; the right panel shows a heatmap of Pr(a), the probability (under repeat

simulation) of reporting each subgroup.

Operating characteristics. The utility function depends on the parameters u0, u1, ↵,

and �. We fix these parameters to achieve a desired error rate. For this purpose, we

summarize several types of error rates. Recall that H0 indicates the decision not to report

any recommended subpopulation and H1 indicates the decision to report the entire patient

population. And recall the notation A = {a : a = (ja, ca)} for any other subpopulation

report. We will use superscript c to denote the absence of a particular report in the list of

15



Take-home Messages

• A general class of probability models that allow for interactions 
and missing data

• Subgroup finding can be casted as a decision problem. 

• Separate the decision problem with probability model

• Can be used in clinical trial designs to adaptively assign 
patients
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Tumor Heterogeneity (TH)
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Clinical Utility of TH



Haplotype
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Tumor Heterogeneity in Terms of 
Haplotype Genome (Z) and Cellular Fractions (W)
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Notations

A

C

A
A

C

A

T G C GACA

Nst = 5

nst = 2

Reference
genome

Reads

A

• SNV:  point mutations, 

• Sample:  

• Data:  # reads mapped to locus of SNV  in sample                                

               # of them with SNV. 


s = 1,…, S
t = 1,…, T

Nst = s t
nst =



Sampling Model
A

C

A
A

C

A

T G C GACA

Nst = 5

nst = 2

Reference
genome

Reads

A

nst ⇠ Binomial(Nst, pst)

      VAF: variant allele fraction

Observed VAF: nst/Nst

Expected VAF: pst = E(nst/Nst)



Link VAFs with Haplotypes

A

C

A
A

C

A

T G C GACA

Nst = 5

nst = 2

Reference
genome

Reads

A

Observed VAF: nst/Nst

Expected VAF: pst = E(nst/Nst)

Key Idea: A variant read must be from a haplotype 
with variant.



s: SNV; c: haplotype (latent); t: sample

zsc = 1: haplotype c has a variant on SNV s.

zsc = 0: haplotype c has no variant on SNV s.
wtc: fraction of haplotype c in sample t.

Linking Equation: 

Link VAFs with Haplotypes
Key Idea: A variant read must be from a haplotype 

with variant.

pst = ∑
c

wtczsc



Haplotype Genotype Z

1 2 3 … C
1
2
3
4

…
S

SNVs

Haplotypes

 on ( ) binary matrixp(Z) S × C

Indian Buffet Process (IBP)
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IBP Prior
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Model Summary

p(Z,w, n | N) = p(Z)|{z}
IBP

p(w | Z) p(n | Z,w,N)| {z }
Binomial

.

pst =
X

c

wtczsc

p(wt) ⇠ Dir(a1, . . . , aC), t = 1, . . . , T .

p(Z,w | N,n)



Application: Intra-Tumor Heterogeneity

• One tumor from lung cancer; 4 samples surgically 
dissected


• Each sample generates a whole-genome 
sequencing data set


• Bio-X pipeline (BWA, Samtools, GATK) for data 
preprocessing: coverage ~ 100X.


• Selected S=17,160 SNVs
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• Exome-sequencing data for five tumor samples 
from four different pancreatic ductal 
adenocarcinoma (PDAC) patients 

• Bio-X pipeline (BWA, Samtools, GATK) for data 
preprocessing: coverage ~ 70X.  

• Selected 118 SNVs: 1) significant coverage in all 
samples; 2) related to PDAC in the KEGG 
pathway database; 3) are nonsynonymous

Application: Inter-Tumor Heterogeneity
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Extension: Categorial IBP
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2. Feature Allocation Models for TH (Aim 1)

2.1 Categorical Indian Buffet Process (cIBP) for DNA-Seq Data.

2.1.1. Overview. The method that we described in §1.4. used a (finite) IBP model for inference on haplotypes
(or equivalently for inference on subclones assuming that all alleles are homogyzous). We propose a new class
of models, the categorical IBP (cIBP), to model subclones, explicitely allowing for heterozygous alleles. The
important change is that we now interpret the columns of Z as characterizing subclones instead of haplotypes.
Later, we will use the cIBP for modeling copy number data as well (Aim 2). We will develop the cIBP as a
generalization of the IBP prior for a random binary matrix Z. It is a natural extension of the basic IBP to a prior for
a categorical matrix Z, where each entry zsk 2 {0, . . . , Q} is a categorical random variable. In particular, we will
use three values 0, 0.5 and 1 to represent the subclonal true VAFs at each locus, with 0 denoting homozygous
and no variant sequences on both alleles, and 0.5 and 1 denoting a heterozygous variant and a homozygous
variant, respectively. For example, in Figure 3 the true VAF of SNV 1 in subclone 1 is 0.5. Note that at each SNV
the true VAF is equivalent to the subclonal genotype or so-called B-allele frequency. We use the unconventional
term “true VAF” to be consistent of our previous discussion related to observed and expected VAFs.

Subclones*

*
SNVs*

1* 2* 3* 4* 5*

1* 0.5* 1* 0* 1* 0*

2* 1* 0.5* 1* 1* 1*

3* 0.5* 0* 0* 0* 0.5*

4* 0.5* 0* 0.5* 0* 0.5*

5* 1* 1* 0.5* 0.5* 0.5*

6* 1* 0* 0.5* 0* 0*

7* 1* 0* 0* 0* 0*

8* 1* 0.5* 0* 0.5* 1*

9* 1* 0.5* 1* 1* 1*

10* 0.5* 0* 0* 0* 1*

Figure 8: A trinary fea-
ture matrix, Z.

2.1.2. The cIBP model. The cIBP can be described in terms of the restaurant metaphor.
The setting is the same as in the IBP described in §1.2.3, with S number of customers
in a buffet restaurant with infinite number of dishes. But now assume that each dish
comes with a choice. For example, we can assume for the moment that Q = 2, and 0.5
and 1 denote the spice level - mild(0.5) and hot(1) of a particular dish (Figure 8). Each
customer must choose a spice level each time a dish is selected.

In the proposed application to inference for TH, the customers are the SNVs, and the
dishes are now the latent subclones, and the spice levels refer to the true VAFs at the
SNVs. The interpretation of columns as subclones is the main difference to the earlier
model, when the columns of Z represented haplotypes. For simplicity, we continue to
describe the construction in terms of the restaurant process. Consider the s-th customer
entering the restaurant. Let Z denote the (s � 1) ⇥ Ks�1 matrix of choices for the first
(s�1) customers. Here Ks�1 is the total number of dishes the previous (s�1) customers
selected. With some probability the s-th customer chooses one of the earlier sampled
dishes. The process is indexed by a (Q + 1)-dimensional vector of parameters, � = (�0, . . . ,�Q) with �? =P

q �q. For dish k, let mkj be the number of customers so far who selected the dish with spice level j, and
mk· =

PQ
j=1mkj , the total number of customers who picked the dish before customer s. Customer s will take dish

k with spice level j with probability p(zsk = j | Z,�) = (mk·/i) · (�j +mkj)/(�? +mk.), and then select a number
K+

sj ⇠ Poi{(�j/�?) · (↵/s)} of new dishes with spice level j, and therefore select a total number K+
s ⇠ Poi(↵/s)

of new dishes, k = Ks�1 + 1, . . . ,Ks for Ks = Ks�1 +K+
s . Finally, the categorical matrix Z is updated by adding

columns for the K+
s new dishes and the s-th row. Here ↵ > 0 is a parameter that indexes the cIBP. We write

cIBP(Q,↵,�) to denote the cIBP process with (Q+ 1) categories and indexed by (↵,�).

2.1.3. Theoretical basis of cIBP. In [45] the authors have shown that the IBP can be characterized by what is
known as the underlying de Finetti measure. They show that this is a beta process. In short, in a first step, a
beta process generates a sequence of Bernoulli success probabilities. Each feature becomes associated with
one of these success probabilities. The entries of the binary matrix are then generated by Bernoulli draws with
these probabilities. We will show that the cIBP can be constructed as a generalization of the IBP using the Beta-
Dirichlet (BD) process [46] as the underlying de Finetti measure.
Pitfalls: In [47] we have shown that a straightforward construction that replaces the Beta prior underlying the IBP
construction by a Dirichlet prior and multinomial sampling fails (the model with finite columns fails to converge
with an increasing number of columns). This prompted us to consider the proposed cIBP models.

2.2. Efficient Posterior Inference – MAD Bayes

One major challenge in the implementation of the proposed nonparametric models is related to posterior compu-
tation. In our earlier work [39], we implement a finite IBP and selected K by an ad-hoc model-selection method.

Subclone



Clinical Trial Based on TH

Figure 10: The scheme of the PANGEA trial.

We propose to add inference for TH as
additional data analysis and will use the
framework and data from the trial to de-
velop an alternative adaptive design based
on TH. As part of the current protocol
patients will have planned serial biopsies
at each progression point to determine
molecular evolution over time and treat-
ment. Each biopsy sample will be se-
quenced on the targeted genes, and intra-
tumor TH will be assessed across mul-
tiple biopsy samples. Samples between
patients will be compared for inter-tumor
TH on the oncogenic driver genes. It is
of particular interests to identify new sub-
groups of patients that are similar in their
TH-profiles. For example, a common set
of haplotypes formed by SNVs within the
oncogenic drivers will potentially provide
new insight on the genomic composition of
GECs and inform targeted therapy for the
subgroup. The correlative science that we propose to add with inference under the proposed models for TH will
greatly improve our understanding of the disease with respect to inter-patient and intra-patient heterogeneity. We
propose one next.

4.2. Clustering on the Basis of Feature Allocation

To prepare for future TH-based clinical trials, we develop a random clustering model that relates TH to clinical
characteristics by forming patient clusters on the basis of imputed TH. TH as a genetic marker can greatly improve
the clinical decision on disease diagnosis and prognosis. We propose a final model elaboration that will facilitate
the investigation of such subgroups.

Let d = (d1, . . . , dT ) index a partition of patient samples into clusters, with dt = j if sample t is in the j-th
cluster and let J = max dt denote the number of distinct clusters. A random cluster arrangement of patients is
then formally a probability model p(d), that is, a random partition. We achieve the desired model extension by
replacing

Q
t p(wt) in model (7) by a model augmentation p(d)p(w | Z,d) (we include Z in the conditioning set

because the number of columns of Z determines the dimension of w). We define p(w | Z,d) by assuming that all
samples in a cluster share the same value, that is, wt = w?

j for all t with dt = j. Here w?
j denotes cluster-specific

unique values.
As prior p(d) we will use the Pólya urn model p(d) / aJ

QJ
j=1(⌫j � 1)!. Here ⌫j =

P
t I(dt = j) is the size

of the j-th cluster and a is the total mass parameter of the Pólya urn prior. Conditional on d we then assume
wt = w?

j for j = dt and complete the model with independent priors, w?
j ⇠ Dirich(·). The key innovation is

that we define the prior p(wt | Z,d) for the subclone proportions wt conditional on the sample partition d. The
full extended model (7) becomes

nQ
s,t p(nst | Nst, wt,Z) p(Mst | wt,L)

o
⇥

Q
t p(wt | Z,d) ⇥ p(L,Z) ⇥ p(d). A

similar extension is possible for the model without CNV.
Significance: Posterior estimates on patient cluster labels p(d | data) provide information about meaningful
patient subgroups that are based on the similarity in the subclonality of their tumors, thus informing treatment
options. These results can be exploited for novel clinical trials. We will adapt the design from [62] to exploit such
information.


