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Outline
• Part 1: Monday 
• Density estimation for efficient clinical trial designs

• Regression for precision dosing


• Part 2: Wednesday 
• Clustering for subgroup finding

• Latent feature models for tumor heterogeneity


• Part 3: Friday

• Estimating treatment effects from observational data
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Part 3: Estimating treatment effects from 
observational data 
• Single stage treatment 

• Dynamic treatment regimens (multiple stage 

treatments)

• Treatments in continuous time

• Connection to offline reinforcement learning





Remdesivir

Corticosteroids (e.g., dexamethasone)

Repurposed Drugs



Clinical Trials for Remdesivir

No Definitive Conclusions!



Estimating the Effect of Remdesivir from Real 
World Data





Correct for Assignment Bias



Causal Estimands

Average treatment effect:  
Δ = 𝔼[Y(1) − Y(0)]

 is the potential outcome under , Y(z) z z = 0,1

Stable Unit Treatment Value Assumption (SUTVA)

Yi(Zi) ⊥⊥ Zj



Assumptions

• Consistency 
 


• Positivity 



• No unmeasured confounders 
assumption (NUCA)  

Y = ZY(Z) + (1 − Z)Y(1 − Z)

0 < Pr(Z = 1 ∣ X, Y(0), Y(1)) < 1

Pr(Z = 1 ∣ X, Y(0), Y(1)) = Pr(Z = 1 ∣ X)



Average treatment effect:  
Δ = E{μ1(X) − μ0(X)}

= E{
ZY

e(X)
−

(1 − Z)Y
1 − e(X)

}

μz(X) = E(Y ∣ Z = z, X)

Propensity score:  e(x) = Pr(Z = 1 ∣ X = x)



Estimators

• Outcome model 

 

• Inverse probability weighting (IPW) 

Δ̂O =
1
n

n

∑
i=1

{ ̂μ1(Xi) − ̂μ0(Xi)}

Δ̂ipw =
∑n

i=1 ZiYi/ ̂e(Xi)

∑n
i=1 Zi

−
∑n

i=1 (1 − Zi)Yi/(1 − ̂e(Xi))

∑n
i=1 (1 − Zi)



BNP Methods

• Outcome model 
• BART (Hill, 2011)

• Dirichlet process mixture (Kim et al, 2017)

• Gaussian process (Roy et al. )


• Inverse probability weighting (IPW) 
• Pitman-Yor process pior (Karabatsos 

and Walker, 2011)

• BART (Hahn et al., 2020)



Choice of Prior
Papadogeorgou and Li, 2020

Choice of nonparametric prior: A toy example
by Surya Tokdar; Papadogeorgou and Li, 2020
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Figure 2: In a toy example a single covariate ‘age’ influences both treatment assignment and a continuous
“outcome”; younger people are more likely to receive treatment and higher outcome scores. For either
group, counterfactuals are predicted by learning outcome-age relation from the other group’s data and
estimated treatment effect (“Effect”), i.e., the difference between predicted outcome and predicted counter-
factual outcome, is shown as a function of age. The true effects curve is deliberately omitted to focus on
the issues of potential prediction bias arising from confounding. Linear model (LM) fits are good within
groups, but appear overconfident while predicting counterfactuals. Add-GP trades potential bias with in-
creased uncertainty bands and produces a more robust effect quantification. BART, which has been used
by Hill (2011) for counterfactual prediction, produces shorter error bars and remains prone to bias.

to the ideas of matching (Rosenbaum & Rubin, 1983; Stuart, 2010), but add-GP offers several con-
ceptual and practical advantages: A) it works effortlessly with binary, multi-category, continuous
outcomes, and potentially vector valued treatments; B) it requires no formal “balance check”12

– which is often hard to implement for high-dimensional Z and continuous treatment variables
(Hill, 2008) – instead lack of local balance is flagged by widening of prediction uncertainty (see
Figure 2); C) it does not require removing observation units that contribute to non-overlapping
propensity score distributions13, rather such units are viewed as data units that will produce very
isolated (t, Zi) pairs and this incur widest prediction error bars.

5.2.2 Validation objectives. We will carry out detailed validation studies to investigate the follow-
ing questions.

1. Does add-GP retain its “trade confounding-bias for variance” principle when analyzing high
dimensional, noisy, heterogeneous data, and, offer reliable inference on treatment effects in
presence of confounding?

2. Can add-GP, with its ability to predict a wide variety of counterfactuals14, expand public pol-
icy research by answering questions that could not be answered earlier with more restrictive

12For binary treatment T � {�1, 1} it requires checking that, post-matching, the sample distributions of Z|(T = 1)
and Z|(T = �1) are close to each other.

13Again, for binary treatment, non-overlapping is said to have occurred if the range of {Q(T = 1|Z = Zi) : Ti = 1}
is (substantially) different from the range of {Q(T = 1|Z = Zi) : Ti = �1}.

14The observation that would have been obtained if a unit was assigned to a different treatment or given a different
dose.

10

Figure: Estimates of counterfactuals and CATE and corresponding
uncertainty band as a function of the single covariate ‘Age’ by: linear
model (LM), Gaussian Process (GP), BART. ⇥: treated; �: control.

For causal inference (or anything), being Bayesian 
should be a tool, not a goal. —Fan Li



Effectiveness results
• Primary outcome: Time to clinical improvement

• Result: Remdesivir had benefits in time to clinical 

improvement with aHR=1.55, p<1e-05, 95% CI: 
1.28-1.87

Garibaldi et al., JAMA Network Open, 2021




Effectiveness resultsEffectiveness results
• Secondary outcome: Time to death

• Results: not statistically significant with aHR=0.8, 

p=0.44, 95% CI: 0.46-1.41



Subgroup analysis stratified by severity
Mild/Moderate Severe

Time to clinical improvement: 
aHR 1.54, 95% CI: 1.22-1.93

Time to death: aHR 0.78, 95% CI: 0.27-2.28

Time to clinical improvement: 
aHR 1.39, 95% CI: 0.91-2.11

Time to death: aHR 0.94, 95% CI: 0.43-2.03

Treat early!!
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Frontline: “Remission Induction”

• At the start: chemotherapy, to achieve CR.
• Less than 5% blastic blood cells, and none with leukemic 

phenotype

• Platelet count > 

• WBC count >

• Patients may 1)die while in Induction, 2) 
resistant to frontline, or 3) relapse after CR.

Salvage

105 /µL

103 /µL

Motivation: Acute Leukemia Trial



Dynamic Treatment Regimens
 stages for one individual
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Figure 1: Causal graph for adjusting time-varying confounding by the G-computation formula.
outcome (e.g., Hernán et al. (2000)), we propose below a Bayesian nonparametric model that models
longitudinal responses in three parts: a baseline progression with no treatments prescribed, responses
to treatments over time, and noises. We tackle the general setting of learning from data with multiple
exposures to the same treatment or different treatments under the assumption of additive treatment
effects.

We model the potential outcome Yij using a generalized mixed-effects model combining the
baseline progression and the treatment responses as follows:

Yij |Xij , Ai,<tij = b(Xij) + ui(tij)| {z }
baseline progression

+ fi(tij ;Ai,<tij )| {z }
treatment response

+ ✏i(tij ;Ai,<tij)| {z }
noise

, j = 1, ..., Ji. (2)

2.1 Modeling Baseline Progression

b(Xij) is the fixed-effects component that captures the dependence of the outcome variable on
the observed covariates Xij . The features include time-invariant measurements (e.g., age, gender),
denoted by Xi0, and time-varying measurements (e.g., observation times, changes in physiology),
denoted by Xi1(tij). Here we model b(Xij) as a linear regression:

b(Xij ;�i) = XT
ij�i = XT

i0�i0 +Xi1(tij)
T�i1. (3)

ui(tij) is the random-effects component that models the individual-specific deviations from b(Xij)
over time in baseline progression. We choose ui to be generated from a zero-mean Gaussian process
with a structured covariance Kui(�2

ui, ⇢ui) = Cov(ui(tij),ui(tij0)) = �2
ui⇢

|tij�tij0 |
ui . Here, ⇢ui 2 (0, 1).

This represents an exponential covariance function, where �2
ui is referred as a scale parameter and

⇢ui as a smooth parameter. Similar choices were made by Quintana et al. (2015) in their application
of modeling functional data. A different choice for both the mean and the covariance kernel can be
made depending on the properties of the data; see Schulam and Saria (2015) for a different example
of the baseline model for modeling progression in chronic diseases.

2.2 Modeling Treatment-Response

We focus on scenarios where treatment choices are discrete and treatment effects are additive. Given
the set of treatments Ai,<tij preceding time tij , we formulate the treatment response model as:

fi(tij ;Ai,<tij ) =
X

l:⌧il<tij

gi,Ail(tij � ⌧il), (4)

where gi,Ail(tij � ⌧il) denotes the response curve of individual i for treatment Ail that was given at
time ⌧il. To estimate the cumulative effect at tij , the response curves from the treatment set Ai,<tij

are added. We parameterize the function gid(t) as

gid(t) =

(
b0 + ↵1id/[1 + exp(�↵2id(t� �id/2))], if 0  t < �id
bid + ↵0/[1 + exp(↵3id(t� 3�id/2))], if t � �id,

(5)

4

Time-varying confounding: doctors use the measurement of a variable (Lk-1) 
to determine whether or not to treat (Ak) which affects the variable’s value 
(Lk) at a subsequent time.



Dynamic Treatment Regimens
Denote 

• The dynamic treatment regimen is the sequence of 

decision rules:





• Give a dynamic treatment regimen, we can employ the 
actions determined by decision rules


Hj = (L0, A1, L1, …, Aj, Lj)

d1(H0), d2(H1), …, dK(HK−1)

a1 = d1(H0), a2 = d2(H1), …, aK = dK(HK−1)

Goal: find decision rules that maximize the expected 
cumulative reward. 



Assumptions
• Consistency 




• Positivity 

• No unmeasured confounders 
assumption (NUCA) 

Assumptions

• The first assumption is a consistency assumption where we

assume that

Lj =
∑

āj−1∈Āj−1

L∗
j (āj−1)I(Āj−1 = āj−1), j = 1, . . . ,K

Y =
∑

āK∈ĀK

Y ∗(ā)I(Ā = ā)

• That is, the response that is observed corresponds to the potential

response (outcome) for the observed treatment actually received.

(No interference between patients)

16



• Dynamic treatment regimens: G-computation 
(Robins, 1986), G-estimation of structural nested 
models (Robins, 2004), IPTW (van der Laan and 
Petersen, 2007), doubly robust IPTW (Tsiatis, 2007; 
Zhao et al., 2015). 


• BNP: 

• DDP-GP in the context of G-computation (Xu et al., 

2017)

• DP mixture in the context of policy search (Quan et 

al., 2020) and in the context of G-computation, 

• BART in the context of Q learning (Murray et al., 

2017)
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Dynamic Treatment Regimens





To address this, we use G-computation formula 
(Robins, 1986).
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Figure 1: Causal graph for adjusting time-varying confounding by the G-computation formula.
outcome (e.g., Hernán et al. (2000)), we propose below a Bayesian nonparametric model that models
longitudinal responses in three parts: a baseline progression with no treatments prescribed, responses
to treatments over time, and noises. We tackle the general setting of learning from data with multiple
exposures to the same treatment or different treatments under the assumption of additive treatment
effects.

We model the potential outcome Yij using a generalized mixed-effects model combining the
baseline progression and the treatment responses as follows:

Yij |Xij , Ai,<tij = b(Xij) + ui(tij)| {z }
baseline progression

+ fi(tij ;Ai,<tij )| {z }
treatment response

+ ✏i(tij ;Ai,<tij)| {z }
noise

, j = 1, ..., Ji. (2)

2.1 Modeling Baseline Progression

b(Xij) is the fixed-effects component that captures the dependence of the outcome variable on
the observed covariates Xij . The features include time-invariant measurements (e.g., age, gender),
denoted by Xi0, and time-varying measurements (e.g., observation times, changes in physiology),
denoted by Xi1(tij). Here we model b(Xij) as a linear regression:

b(Xij ;�i) = XT
ij�i = XT

i0�i0 +Xi1(tij)
T�i1. (3)

ui(tij) is the random-effects component that models the individual-specific deviations from b(Xij)
over time in baseline progression. We choose ui to be generated from a zero-mean Gaussian process
with a structured covariance Kui(�2

ui, ⇢ui) = Cov(ui(tij),ui(tij0)) = �2
ui⇢

|tij�tij0 |
ui . Here, ⇢ui 2 (0, 1).

This represents an exponential covariance function, where �2
ui is referred as a scale parameter and

⇢ui as a smooth parameter. Similar choices were made by Quintana et al. (2015) in their application
of modeling functional data. A different choice for both the mean and the covariance kernel can be
made depending on the properties of the data; see Schulam and Saria (2015) for a different example
of the baseline model for modeling progression in chronic diseases.

2.2 Modeling Treatment-Response

We focus on scenarios where treatment choices are discrete and treatment effects are additive. Given
the set of treatments Ai,<tij preceding time tij , we formulate the treatment response model as:

fi(tij ;Ai,<tij ) =
X

l:⌧il<tij

gi,Ail(tij � ⌧il), (4)

where gi,Ail(tij � ⌧il) denotes the response curve of individual i for treatment Ail that was given at
time ⌧il. To estimate the cumulative effect at tij , the response curves from the treatment set Ai,<tij

are added. We parameterize the function gid(t) as

gid(t) =

(
b0 + ↵1id/[1 + exp(�↵2id(t� �id/2))], if 0  t < �id
bid + ↵0/[1 + exp(↵3id(t� 3�id/2))], if t � �id,

(5)

4

2. Longitudinal Treatment Response Model
As a running example, we use the application of estimating the longitudinal outcome for creatinine
level, an indicator of kidney function. Specifically, our goal is to obtain an individualized estimate
of the response over time for treatments given for modulating creatinine level. We consider the
problem of estimating the treatment responses from sparse, irregularly sampled data such as those
in electronic health records (EHRs). There are two key challenges that must be addressed. First,
in clinical data contained within EHRs, measurements are often not obtained at regular intervals,
and measurement schedules vary across individuals. For example, caregivers may choose to make
measurements once a day on some patients while multiple times a day on others. When the data
are collected at fixed regular intervals, discrete-time approaches that maintain estimates only at
specific points-in-time are adequate (e.g. Taubman et al. (2009)). To address this, we will employ
functional representations instead (Quintana et al., 2015). Another key challenge is the presence of
time-varying confounding (Robins, 1986, 1987). To correct for this confounding, our estimation is
based on Robin’s G-computation formula (Robins, 1986, 1987), a widely used approach in estimating
treatment effects from sequential data with time-varying confounding.

Time-varying confounding: To understand time-varying confounding, let us first consider the
simple example where a treatment tends to be assigned to sicker patients. Since these patients are
sicker and also more likely to die, without accounting for the assignment bias, one might erroneously
conclude this treatment is inferior. In the sequential-treatment assignment setting, such confounding
occurs because doctors use the measurement of a variable to determine whether or not to treat,
which in turn affects the variable’s value at a subsequent time. The casual graph is presented
on the left of Figure 1. In the graph, Y denotes the final outcome, L0, L1, and L2 denote the
intermediate measurements or covariates, and A1 and A2 denote the treatments. From observational
data, since we can only observe one treatment regime and one final outcome Y for each patient, we
apply Neyman-Rubin’s causal model (Sekhon, 2008) to define potential outcomes for the unobserved
counterfactuals. The model defines potential outcome Y (a1, a2) as the outcome when treatment
variables A1 and A2 are assigned to the values a1 and a2, respectively.

To adjust for time-varying confounding, G-computation formula makes two assumptions: consis-
tency and conditional ignobility. First, the potential outcomes are assumed to be consistent with
the observed outcomes, that is Y (a1, a2) = (Y |A1 = a1, A2 = a2). Second, the treatment received at
each time is randomly assigned (i.e. ignorable) conditional on past treatments and covariate history,
that is Y (a1, a2) ? A1, A2|L0, L1, L2. As a result, we can obtain a new causal graph on the right of
Figure 1. Formally, we can write the conditional probability of potential outcome as

p(Y (a1, a2)|L0, L1, L2) = p(Y (a1, a2)|A1, A2, L0, L1, L2) (1)
= p(Y |A1 = a1, A2 = a2, L0, L1, L2),

where the first equality comes from the conditional ignobility and the second equality comes from
the consistency assumption. This is known as the likelihood component in the G-computation
formula. Below we introduce the notations used in the rest of the paper, and propose the longitudinal
treatment response model based on Eq. (1).

Notation: Assume we have observations Yi = {Yij : j = 1, .., Ji} from the ith individual at
(irregularly-sampled) times {ti1, ..., tiJi}. In addition, we have Xi = {Xij : j = 1, .., Ji}, where Xij

is a 1⇥ p vector of observed covariates (e.g., age, gender, observation times) about this individual.
We also have treatments Ai = {Ail : l = 1, ..., Li} that were given to patient i at times {⌧i1, ..., ⌧iLi},
where Ail = d for some treatment type d 2 {1, .., D}. The value of a measurement Yi within an
interval (t, T ] is denoted by Yi,(t,T ]. The sets of measurements and treatments preceding a time t are
denoted by Yi,<t and Ai,<t, respectively.

Our goal is to obtain posterior inference for the treatment response curves at the individual and
population levels, and for the potential outcomes Yi,>t given any sequence of treatments conditioned
upon historical data. In contrast with prior methods that assume a parametric model for the potential

3

Potential outcome
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Figure 8: Marginal posterior distributions of overall survival time under the DDP-GP model
for all 16 regimes.

they share the same prior for the �k’s.

For both methods, the estimates were smallest for the four regimes with FAI as induction

therapy regardless of salvage treatment, and the 90% credible intervals were relatively small

for these inferior regimes. Under the IPTW method, the estimates were largest for the four

34

Trial Data Analysis



•FAI + ATRA followed by non-HDAC at disease 
progression after CR seems promising

•If we had done this analysis before, ATRA might 
have been studied further

Conclusion
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Treatment in Continuous Time

Acute Kidney Injury
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Replacement Therapy (CRRT)

Our goal is to estimate individual’s response over 
time from Electronic Health Record (EHR) data.



Approach: Individualized treatment response (ITR) model 



Approach: Individualized treatment response (ITR) model 

Longitudinal normal 
dynamics
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Figure 1: Causal graph for adjusting time-varying confounding by the G-computation formula.
outcome (e.g., Hernán et al. (2000)), we propose below a Bayesian nonparametric model that models
longitudinal responses in three parts: a baseline progression with no treatments prescribed, responses
to treatments over time, and noises. We tackle the general setting of learning from data with multiple
exposures to the same treatment or different treatments under the assumption of additive treatment
effects.

We model the potential outcome Yij using a generalized mixed-effects model combining the
baseline progression and the treatment responses as follows:

Yij |Xij , Ai,<tij = b(Xij) + ui(tij)| {z }
baseline progression

+ fi(tij ;Ai,<tij )| {z }
treatment response

+ ✏i(tij ;Ai,<tij)| {z }
noise

, j = 1, ..., Ji. (2)

2.1 Modeling Baseline Progression

b(Xij) is the fixed-effects component that captures the dependence of the outcome variable on
the observed covariates Xij . The features include time-invariant measurements (e.g., age, gender),
denoted by Xi0, and time-varying measurements (e.g., observation times, changes in physiology),
denoted by Xi1(tij). Here we model b(Xij) as a linear regression:

b(Xij ;�i) = XT
ij�i = XT

i0�i0 +Xi1(tij)
T�i1. (3)

ui(tij) is the random-effects component that models the individual-specific deviations from b(Xij)
over time in baseline progression. We choose ui to be generated from a zero-mean Gaussian process
with a structured covariance Kui(�2

ui, ⇢ui) = Cov(ui(tij),ui(tij0)) = �2
ui⇢

|tij�tij0 |
ui . Here, ⇢ui 2 (0, 1).

This represents an exponential covariance function, where �2
ui is referred as a scale parameter and

⇢ui as a smooth parameter. Similar choices were made by Quintana et al. (2015) in their application
of modeling functional data. A different choice for both the mean and the covariance kernel can be
made depending on the properties of the data; see Schulam and Saria (2015) for a different example
of the baseline model for modeling progression in chronic diseases.

2.2 Modeling Treatment-Response

We focus on scenarios where treatment choices are discrete and treatment effects are additive. Given
the set of treatments Ai,<tij preceding time tij , we formulate the treatment response model as:

fi(tij ;Ai,<tij ) =
X

l:⌧il<tij

gi,Ail(tij � ⌧il), (4)

where gi,Ail(tij � ⌧il) denotes the response curve of individual i for treatment Ail that was given at
time ⌧il. To estimate the cumulative effect at tij , the response curves from the treatment set Ai,<tij

are added. We parameterize the function gid(t) as

gid(t) =

(
b0 + ↵1id/[1 + exp(�↵2id(t� �id/2))], if 0  t < �id
bid + ↵0/[1 + exp(↵3id(t� 3�id/2))], if t � �id,

(5)
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Figure 1: Causal graph for adjusting time-varying confounding by the G-computation formula.
outcome (e.g., Hernán et al. (2000)), we propose below a Bayesian nonparametric model that models
longitudinal responses in three parts: a baseline progression with no treatments prescribed, responses
to treatments over time, and noises. We tackle the general setting of learning from data with multiple
exposures to the same treatment or different treatments under the assumption of additive treatment
effects.

We model the potential outcome Yij using a generalized mixed-effects model combining the
baseline progression and the treatment responses as follows:

Yij |Xij , Ai,<tij = b(Xij) + ui(tij)| {z }
baseline progression

+ fi(tij ;Ai,<tij )| {z }
treatment response

+ ✏i(tij ;Ai,<tij)| {z }
noise

, j = 1, ..., Ji. (2)

2.1 Modeling Baseline Progression

b(Xij) is the fixed-effects component that captures the dependence of the outcome variable on
the observed covariates Xij . The features include time-invariant measurements (e.g., age, gender),
denoted by Xi0, and time-varying measurements (e.g., observation times, changes in physiology),
denoted by Xi1(tij). Here we model b(Xij) as a linear regression:

b(Xij ;�i) = XT
ij�i = XT

i0�i0 +Xi1(tij)
T�i1. (3)

ui(tij) is the random-effects component that models the individual-specific deviations from b(Xij)
over time in baseline progression. We choose ui to be generated from a zero-mean Gaussian process
with a structured covariance Kui(�2

ui, ⇢ui) = Cov(ui(tij),ui(tij0)) = �2
ui⇢

|tij�tij0 |
ui . Here, ⇢ui 2 (0, 1).

This represents an exponential covariance function, where �2
ui is referred as a scale parameter and

⇢ui as a smooth parameter. Similar choices were made by Quintana et al. (2015) in their application
of modeling functional data. A different choice for both the mean and the covariance kernel can be
made depending on the properties of the data; see Schulam and Saria (2015) for a different example
of the baseline model for modeling progression in chronic diseases.

2.2 Modeling Treatment-Response

We focus on scenarios where treatment choices are discrete and treatment effects are additive. Given
the set of treatments Ai,<tij preceding time tij , we formulate the treatment response model as:

fi(tij ;Ai,<tij ) =
X

l:⌧il<tij

gi,Ail(tij � ⌧il), (4)

where gi,Ail(tij � ⌧il) denotes the response curve of individual i for treatment Ail that was given at
time ⌧il. To estimate the cumulative effect at tij , the response curves from the treatment set Ai,<tij

are added. We parameterize the function gid(t) as

gid(t) =

(
b0 + ↵1id/[1 + exp(�↵2id(t� �id/2))], if 0  t < �id
bid + ↵0/[1 + exp(↵3id(t� 3�id/2))], if t � �id,

(5)

4

Y L0 L1 L2 

A1 A� 
a1 a� 

Y L0 L1 L2 

A1 A� 

Figure 1: Causal graph for adjusting time-varying confounding by the G-computation formula.
outcome (e.g., Hernán et al. (2000)), we propose below a Bayesian nonparametric model that models
longitudinal responses in three parts: a baseline progression with no treatments prescribed, responses
to treatments over time, and noises. We tackle the general setting of learning from data with multiple
exposures to the same treatment or different treatments under the assumption of additive treatment
effects.

We model the potential outcome Yij using a generalized mixed-effects model combining the
baseline progression and the treatment responses as follows:

Yij |Xij , Ai,<tij = b(Xij) + ui(tij)| {z }
baseline progression

+ fi(tij ;Ai,<tij )| {z }
treatment response

+ ✏i(tij ;Ai,<tij)| {z }
noise

, j = 1, ..., Ji. (2)

2.1 Modeling Baseline Progression

b(Xij) is the fixed-effects component that captures the dependence of the outcome variable on
the observed covariates Xij . The features include time-invariant measurements (e.g., age, gender),
denoted by Xi0, and time-varying measurements (e.g., observation times, changes in physiology),
denoted by Xi1(tij). Here we model b(Xij) as a linear regression:

b(Xij ;�i) = XT
ij�i = XT

i0�i0 +Xi1(tij)
T�i1. (3)

ui(tij) is the random-effects component that models the individual-specific deviations from b(Xij)
over time in baseline progression. We choose ui to be generated from a zero-mean Gaussian process
with a structured covariance Kui(�2

ui, ⇢ui) = Cov(ui(tij),ui(tij0)) = �2
ui⇢

|tij�tij0 |
ui . Here, ⇢ui 2 (0, 1).

This represents an exponential covariance function, where �2
ui is referred as a scale parameter and

⇢ui as a smooth parameter. Similar choices were made by Quintana et al. (2015) in their application
of modeling functional data. A different choice for both the mean and the covariance kernel can be
made depending on the properties of the data; see Schulam and Saria (2015) for a different example
of the baseline model for modeling progression in chronic diseases.

2.2 Modeling Treatment-Response

We focus on scenarios where treatment choices are discrete and treatment effects are additive. Given
the set of treatments Ai,<tij preceding time tij , we formulate the treatment response model as:

fi(tij ;Ai,<tij ) =
X

l:⌧il<tij

gi,Ail(tij � ⌧il), (4)

where gi,Ail(tij � ⌧il) denotes the response curve of individual i for treatment Ail that was given at
time ⌧il. To estimate the cumulative effect at tij , the response curves from the treatment set Ai,<tij

are added. We parameterize the function gid(t) as

gid(t) =

(
b0 + ↵1id/[1 + exp(�↵2id(t� �id/2))], if 0  t < �id
bid + ↵0/[1 + exp(↵3id(t� 3�id/2))], if t � �id,

(5)

4



Approach: Individualized treatment response (ITR) model 

0 20 40 60 80 100

−1
0

−8
−6

−4
−2

0

Treatment-response 
curves

Y L0 L1 L2 

A1 A� 
a1 a� 

Y L0 L1 L2 

A1 A� 

Figure 1: Causal graph for adjusting time-varying confounding by the G-computation formula.
outcome (e.g., Hernán et al. (2000)), we propose below a Bayesian nonparametric model that models
longitudinal responses in three parts: a baseline progression with no treatments prescribed, responses
to treatments over time, and noises. We tackle the general setting of learning from data with multiple
exposures to the same treatment or different treatments under the assumption of additive treatment
effects.

We model the potential outcome Yij using a generalized mixed-effects model combining the
baseline progression and the treatment responses as follows:

Yij |Xij , Ai,<tij = b(Xij) + ui(tij)| {z }
baseline progression

+ fi(tij ;Ai,<tij )| {z }
treatment response

+ ✏i(tij ;Ai,<tij)| {z }
noise

, j = 1, ..., Ji. (2)

2.1 Modeling Baseline Progression

b(Xij) is the fixed-effects component that captures the dependence of the outcome variable on
the observed covariates Xij . The features include time-invariant measurements (e.g., age, gender),
denoted by Xi0, and time-varying measurements (e.g., observation times, changes in physiology),
denoted by Xi1(tij). Here we model b(Xij) as a linear regression:

b(Xij ;�i) = XT
ij�i = XT

i0�i0 +Xi1(tij)
T�i1. (3)

ui(tij) is the random-effects component that models the individual-specific deviations from b(Xij)
over time in baseline progression. We choose ui to be generated from a zero-mean Gaussian process
with a structured covariance Kui(�2

ui, ⇢ui) = Cov(ui(tij),ui(tij0)) = �2
ui⇢

|tij�tij0 |
ui . Here, ⇢ui 2 (0, 1).

This represents an exponential covariance function, where �2
ui is referred as a scale parameter and

⇢ui as a smooth parameter. Similar choices were made by Quintana et al. (2015) in their application
of modeling functional data. A different choice for both the mean and the covariance kernel can be
made depending on the properties of the data; see Schulam and Saria (2015) for a different example
of the baseline model for modeling progression in chronic diseases.

2.2 Modeling Treatment-Response

We focus on scenarios where treatment choices are discrete and treatment effects are additive. Given
the set of treatments Ai,<tij preceding time tij , we formulate the treatment response model as:

fi(tij ;Ai,<tij ) =
X

l:⌧il<tij

gi,Ail(tij � ⌧il), (4)

where gi,Ail(tij � ⌧il) denotes the response curve of individual i for treatment Ail that was given at
time ⌧il. To estimate the cumulative effect at tij , the response curves from the treatment set Ai,<tij

are added. We parameterize the function gid(t) as

gid(t) =

(
b0 + ↵1id/[1 + exp(�↵2id(t� �id/2))], if 0  t < �id
bid + ↵0/[1 + exp(↵3id(t� 3�id/2))], if t � �id,

(5)

4

Y L0 L1 L2 

A1 A� 
a1 a� 

Y L0 L1 L2 

A1 A� 

Figure 1: Causal graph for adjusting time-varying confounding by the G-computation formula.
outcome (e.g., Hernán et al. (2000)), we propose below a Bayesian nonparametric model that models
longitudinal responses in three parts: a baseline progression with no treatments prescribed, responses
to treatments over time, and noises. We tackle the general setting of learning from data with multiple
exposures to the same treatment or different treatments under the assumption of additive treatment
effects.

We model the potential outcome Yij using a generalized mixed-effects model combining the
baseline progression and the treatment responses as follows:

Yij |Xij , Ai,<tij = b(Xij) + ui(tij)| {z }
baseline progression

+ fi(tij ;Ai,<tij )| {z }
treatment response

+ ✏i(tij ;Ai,<tij)| {z }
noise

, j = 1, ..., Ji. (2)

2.1 Modeling Baseline Progression

b(Xij) is the fixed-effects component that captures the dependence of the outcome variable on
the observed covariates Xij . The features include time-invariant measurements (e.g., age, gender),
denoted by Xi0, and time-varying measurements (e.g., observation times, changes in physiology),
denoted by Xi1(tij). Here we model b(Xij) as a linear regression:

b(Xij ;�i) = XT
ij�i = XT

i0�i0 +Xi1(tij)
T�i1. (3)

ui(tij) is the random-effects component that models the individual-specific deviations from b(Xij)
over time in baseline progression. We choose ui to be generated from a zero-mean Gaussian process
with a structured covariance Kui(�2

ui, ⇢ui) = Cov(ui(tij),ui(tij0)) = �2
ui⇢

|tij�tij0 |
ui . Here, ⇢ui 2 (0, 1).

This represents an exponential covariance function, where �2
ui is referred as a scale parameter and

⇢ui as a smooth parameter. Similar choices were made by Quintana et al. (2015) in their application
of modeling functional data. A different choice for both the mean and the covariance kernel can be
made depending on the properties of the data; see Schulam and Saria (2015) for a different example
of the baseline model for modeling progression in chronic diseases.

2.2 Modeling Treatment-Response

We focus on scenarios where treatment choices are discrete and treatment effects are additive. Given
the set of treatments Ai,<tij preceding time tij , we formulate the treatment response model as:

fi(tij ;Ai,<tij ) =
X

l:⌧il<tij

gi,Ail(tij � ⌧il), (4)

where gi,Ail(tij � ⌧il) denotes the response curve of individual i for treatment Ail that was given at
time ⌧il. To estimate the cumulative effect at tij , the response curves from the treatment set Ai,<tij

are added. We parameterize the function gid(t) as

gid(t) =

(
b0 + ↵1id/[1 + exp(�↵2id(t� �id/2))], if 0  t < �id
bid + ↵0/[1 + exp(↵3id(t� 3�id/2))], if t � �id,

(5)

4

Figure 2: Examples of treatment response curves

with five free parameters {↵1,↵2,↵3, �, b}; here, the collection of individual-specific treatment response
parameters ↵1id ’s are short-handed to ↵1 and so on.

The motivation for choosing this particular form of the gid(t) function is to obtain a flexible
asymmetric “U” shape curve, as shown in Figure 2. We concatenate two sigmoid curves and allow
the parameters for the two sigmoid functions and the point of switching between the two sigmoids to
vary so that it can flexibly capture responses where a marker may either increase or decrease and
eventually converges to a stable value. In Figure 2, we present several examples of such curves, and
highlight one particularly for g(t;↵1 = 5,↵2 = 0.2,↵3 = 0.4, � = 40, b = 2). Here, ↵1 2 < represents
the curve’s maximum value and the sign of ↵1 determines whether the treatment increases (i.e.
↵1 > 0) or decreases (i.e. ↵1 < 0) the target marker value. ↵2 2 (0, 1) and ↵3 2 (0, 1) individually
model the “steepness” of the two sigmoid curves; � 2 < denotes the switching point; b denotes the
value that the curve stabilizes and is constrained such that b/g(�) 2 (0, 1). Lastly, to make the
gid(t) function well defined, we set b0 = �↵1id/[1 + exp(↵2id�id/2)] for attaining gid(0) = 0, and
↵0 = (a1id + 2b0 � bid)/(1 + exp(�a3id�id/2)) for attaining a unique peek value at t = �id.
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Figure 3: An illustration of additive treatment responses over time in single regime. (a) In black,
an example baseline progression for the target outcome under no treatment. In red, we
show the time of treatment assignment and the treatment-response curve. (b) In blue,
the outcome over time is shown—obtained by adding the baseline progression and the
treatment response curve. (c) The outcome over time when the treatment is assigned
multiple times—the timing of the assignments are shown with vertical red lines.

In Figure 3, we illustrate the cumulative effects by adding multiple treatment responses. In Figure
3 (a), the black line denotes the increasing outcome due to an increasing baseline progression under
no treatment. For example, in individuals with chronic kidney disease, their kidney function markers
under no treatment become worse over time. In Figures 3 (a-c), the vertical red lines denote times
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Numerical analysis
Goal:  estimate heterogeneous response curves to renal replacement therapy.

Marker: creatinine, a measure for kidney function.

Treatments: renal replacement therapy (RRT): intermittent hemodialysis (IHD), 
continuous Veno-Venous Hemofiltration (CVVH), and CVV Hemodialysis 
(CVVHD). 

Figure 7: An example trajectory of managing creatinine levels within multiple treatment regimes.
Black dots denote the observed creatinine levels. Vertical dashed lines denote the timing
of treatments.

creatinine levels following the first elevated creatinine blood test measurement (i.e. creatinine level
higher than 1.3 mg/dL for men and 1.1 mg/dL for women). The dataset contains 428 trajectories
with a total of 16, 593 creatinine observations. Each individual trajectory has an average duration
of 23 days. IHD are usually prescribed 3 times a week, each treatment lasting 3 to 6 hours or less
(Pannu and Gibney, 2005). CVVH and CVVHD are two modalities of Continuous Renal Replacement
Therapy (CRRT), and they are intended to be applied for 24 hours per day in ICU (Pannu and
Gibney, 2005). The dataset contains a total of 525 instances of IHD, 186 of CVVH, and 981 of
CVVHD. Creatinine levels were standardized by the population mean of 3.16 and standard deviation
of 1.87.

Baselines. We compare the performance of ITR with three baselines: the pop model, individual
model, and sub-pop model. First, we evaluate against what we refer to as the pop model, which
estimates treatment responses at the population level and does not take into account variations across
individuals. The pop model is an instance of ITR where the baseline progression and the treatment
response (transformed) parameters are drawn uniformly from a broad prior. To evaluate the extent
to which individualizing the treatment response estimates is important, we also compare ITR against
a second baseline called the indivdiual model. In the individual model, the parameters are drawn
independently from a broad prior so that each individual samples its own set of parameters. Lastly,
we compare ITR against a third baseline, called the sub-pop model, where the parameters are drawn
from a DP instead of a DPM. This allows treatment responses to vary by subgroups but there is no
explicit representation for differences across individuals within a subgroup.

Experimental setup. We assume that the fixed-effects component in the baseline progression
is a linear regression model. We include the patient’s age and weight as two baseline covariates. In
addition, we include a time-varying covariate as follows. As described above, creatinine increases over
time once RRT has been discontinued. This drift is modeled using a function of time—in this case,
log(t�W ), where t is the time since last RRT discontinuation. W is the window of time it takes
for creatinine to stabilize after RRT discontinuation. W was selected based on clinical guidance:
W = 6 hours for IHD and W = 12 hours for CRRT. In Figure 7, we show an example creatinine
trajectory and the example window W. Thus in total, we have p = 4 covariates (i.e., age, weight,
time, and 1 for the intercept). We posit a non-informative Normal-inverse-Wishart base distribution
NIW(0, 1, p+ 2, Ip) for the regression coefficients. We posit a strong prior N (log(0.12), 0.32) on the
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Data: publicly available in the MIMIC-II Clinical 
Database (Saeed et al., 2002). 

•We have 428 trajectories with 16,593 creatinine 
observations. 


•525 instances of IHD, 186 of CVVH, and 981 of 
CVVHD. 



Numerical analysis

Figure 8: Comparison of ITR vs. baseline models prediction errors on creatinine.

transformed scale parameters in the exponential Gaussian process kernel and a non-informative prior
N (logit(0.5), 4) on the transformed smooth parameters.

For the treatment response model, we posit a Gaussian prior on the peak effects with the means
chosen by the domain expert. Specifically, these were set as N (�2, 1) for IHD and N (�1, 1) for
both CVVH and CVVHD. Similarly, we posit a Gaussian prior on the change points with the means
chosen by the domain expert based on the expected duration over which the treatment takes effect.
Specifically, these were set as N (1 hr,100 hrs) for IHD and N (12 hrs, 100 hrs) for both CVVH and
CVVHD. We posit non-informative Gaussian priors N (logit(0.5), 4) for the two steepness parameters
and the ratio of the long-term effect to the peak effect.

For the noise, we posit an Inverse-Gamma prior IG(1, 1) on the variances of the i.i.d. noises. We
posit strong priors N (log(0.12), 0.32) on the scale parameters for the time-dependent noises, and
non-informative priors N (logit(0.5), 4) for the smooth parameters.

Evaluation. We use the prediction error on a held-out test set to compare the proposed model
to the baseline models. The proposed approach can update parameters online but for the sake of this
comparison, we treat the first 50 observations from each individual as training data and the remainder
as test. Predictions of the measurements are made under the treatment strategy prescribed in the
test set. Since the creatinine levels are measured on average twice a day and treatment decisions are
made at the granularity of days, we report the prediction errors for seven days following the end
of training. We run 4 randomly initialized chains each for 5,000 iterations with a burn-in of 2,500
iteration and thin of 50 iterations.

To calculate the prediction error, we predict each patient’s creatinine levels for seven days based
on the individual parameters sampled at every 50 iterations after the burn-in. We compute prediction
means individually by averaging each patient’s 200 predictions (from the 4 chains each with 50
predictions), and obtain 95% credible intervals individually using the quantiles of the 200 predictions.
We calculate the root mean squared error (RMSE) on each individual’s prediction mean, and average
across the individuals to obtain the overall prediction error and the 95% credible interval.

Quantitative Results. In Figure 8, we report the mean prediction errors with the 95% credible
intervals for ITR and the three baseline models. ITR outperforms the baseline models significantly
after day 3. Individual model outperforms sub-pop model, and after day 4, it significantly outperforms
pop model. Sub-pop model outperforms pop model significantly after day 6. ITR outperforms sub-pop
model because ITR is more expressive since it allows individual-level heterogeneity and information to
be shared across individuals in the same group. On the other hand, ITR also outperforms inidividual
model because the lack of subgroup structure makes individual model statistically less efficient.

Qualitative Results. In Figure 9, we present the predictions from ITR and pop model for two
example patients. Only the last 20 observations (black dots) are plotted for the training set. The
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Comparison:

• pop model: estimate treatment effect at the population level. 

• individual model: estimate treatment effect at the individual level. 

• sub-pop model: treatment effect vary by subgroups. 



Figure 9: Comparison of ITR vs. pop model predictions on two example trajectories for creatinine
level. The black points are measurements in the training set and red points are measure-
ments in the test set The dashed lines are the predicted baseline progressions and the
solid lines are the final predictions of the creatinine levels. Prescriptions of treatments
are shown as vertical dashed lines. Treatment response curves are plotted on the right of
the trajectory predictions. Ribbons denote the 95% credible intervals. Heat maps with
the colors light yellow (renal SOFA of 0) to red (renal SOFA of 4) are plotted above the
trajectory predictions.
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red points are creatinine levels that are reserved for the test set. The dashed lines are the predicted
baseline progressions and the solid lines are the final predictions of the creatinine levels. Prescriptions
of treatments are shown as vertical dashed lines. Treatment response curves are plotted on the right
of the trajectory predictions. Ribbons denote the 95% credible intervals.

As an aid for our analysis, we plot a heat map of the renal SOFA (Sequential Organ Failure
Assessment) scores (Vincent et al., 1996) above the trajectory predictions. Renal SOFA scores,
ranging from 0 to 4, is typically used in the ICU to capture the patient’s kidney function. A higher
score represents a higher risk for kidney failure. From day 32 to 36, the baseline progression for
patient 44 inferred by ITR increases to a greater extent in comparison with the baseline progression
inferred by pop model. The ITR’s inference aligns with the clinical expectation that the patient’s
creatinine levels will increase without treatment since the patient has a renal SOFA score of 4 during
this time period. In comparison to the treatment response curve estimated by pop model, the response
curve estimated by ITR indicates that the patient is less responsive to CVVHD. The difference
between these two estimates could be explained by the fact that although this patient has an overall
averaged renal SOFA of 3.9, the average for population is 2.5. For patient 228, who was documented
as a Chronic Kidney Disease (CKD) patient, the baseline progression inferred by ITR increases to a
smaller extent in comparison with the baseline progression inferred by pop model. ITR aligns with
the clinical expectation that this patient’s creatinine levels will remain stable with RRT treatment
since RRT is a modality used to maintain creatinine levels within the normal range in CDK patients
with end stage renal disease.

More broadly, we expect the patients to be less responsive to RRT if they have more severe kidney
dysfunction. In Figure 10 (a), we plot the estimated treatment response curves associated with the
patient’s minimum renal SOFA score. A renal SOFA score was calculated each time the creatinine
level was measured following the first test that indicated an elevated creatinine level. The curves are
normalized over the patient’s initial creatinine level at the time when RRT is initiated. We observe
that patients with more severely compromised kidney function (as indicated by higher SOFA scores)
are more resistant to RRT. In Figure 10(b), we plot the curves for AKI patients, identified by the
ICD-92 diagnosis code 584, and observe that the AKI patients who also have CKD (identified by
ICD-9 codes 585, 585.1–585.6, and 585.9) tend to be more resistant to RRT than those who only
have AKI.

Figure 10: Association of responsiveness to CVVH with kidney disease severity

2. http://www.cdc.gov/nchs/icd/icd9.htm
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Goals

• Understand how creatinine changes along the time


• Study how creatinine affects survival 


• Learn how doctors treat patients


• Find an optimal visitation and dosing strategy to 
maximize survival outcomes.


Longitudinal modeling

Joint modeling of longitudinal data and survival

Visitation schedule and dosage

Optimization



Approach Overview

p(Longitudinal, Survival, Visitation, Dosage)
argmax Reward (Visitation, Dosage)

Visitation, Dosage

trates the proposed Bayesian joint framework and how its components interact. The R

package doct (short for “Decisions Optimized in Continuous Time”) implementing the

proposed model and algorithm is available at https://github.com/YanxunXu/doct.
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Figure 2: Illustration of the proposed method.

The rest of the paper is organized as follows. In section 2, we present the proposed

Bayesian joint model consisting of the decision model (for visitation schedules and

dosages) and the observation model (for clinical longitudinal measurements and patient

survival). In section 3, we elaborate on our optimization procedure for the decision

model. We evaluate the proposed method through simulation studies in section 4

and applying it to the DIVAT kidney transplantation dataset in section 5. Lastly, we

conclude the paper with a discussion in section 6.
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Marked Temporal Point Process

Ai,T = {(ti,1, Di,1), . . . , (ti,ni , Di,ni)}, can be written as

p(Ai,T ) = exp
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2.2 Modeling longitudinal creatinine data and survival events

Joint modeling of longitudinal creatinine measurements, time to survival events,

follow-up schedules, and tacrolimus dosages is critical to understand how creatinine

levels measured longitudinally together with the physician’s clinical decisions impact

patients’ survivals and provides us opportunities to optimize clinical decisions with the

goal of maximizing patients’ survivals. We developed a MTPP to jointly model clinical

decisions including follow-up schedules and tacrolimus dosages in Section 2.1. In this

section, we further propose a joint model for longitudinal creatinine measurements and

time-to-event outcomes that are associated with the proposed MTPP in Section 2.1.

A typical joint model of longitudinal data and time-to-event data consists of two

submodels: a longitudinal data model and a time-to-event data model, where the time-

to-event model is linked to the longitudinal model by certain association structure, such

as sharing random e↵ects (Rizopoulos et al., 2014). Recall that Yi,j = Yi(tij) denotes

logarithm of the creatinine level for patient i at j-th follow-up visit occurring at time

ti,j, i = 1, . . . , N , j = 1, . . . , ni. Let Yi(t)⇤ be the underlying true but unobserved

longitudinal process at time t � 0. We assume

Yi(t) = Yi(t)
⇤ + ✏l = Zi(t)�l +Ri(t)bi + ✏l, ✏l ⇠ N(0, �2

l ), bi ⇠ N(0,B), (2.3)

where Zi(t) and Ri(t) are the covariate vectors associated with fixed and random e↵ects,

respectively. The fixed e↵ect covariates Zi(t) = [1, Di(t),Xi, t, t2] include an intercept

12

Ai,T = {(ti,1, Di,1), . . . , (ti,ni , Di,ni)}, can be written as

p(Ai,T ) = exp
⇣
�

Z ti,ni

0

�i(x)dx
⌘

| {z }
Prob. of no visits at t2[0,T ]\{ti,j}

ni
j=1

niY

j=1

⇣ (2.1)z }| {
�i(ti,j)| {z }

Prob. of an action at ti,j

p(Di,j | Ai,j,�d, �
2
d)| {z }

Prob. of dosage Di,j

⌘

(2.2)

2.2 Modeling longitudinal creatinine data and survival events

Joint modeling of longitudinal creatinine measurements, time to survival events,

follow-up schedules, and tacrolimus dosages is critical to understand how creatinine

levels measured longitudinally together with the physician’s clinical decisions impact

patients’ survivals and provides us opportunities to optimize clinical decisions with the

goal of maximizing patients’ survivals. We developed a MTPP to jointly model clinical

decisions including follow-up schedules and tacrolimus dosages in Section 2.1. In this

section, we further propose a joint model for longitudinal creatinine measurements and

time-to-event outcomes that are associated with the proposed MTPP in Section 2.1.

A typical joint model of longitudinal data and time-to-event data consists of two

submodels: a longitudinal data model and a time-to-event data model, where the time-

to-event model is linked to the longitudinal model by certain association structure, such

as sharing random e↵ects (Rizopoulos et al., 2014). Recall that Yi,j = Yi(tij) denotes

logarithm of the creatinine level for patient i at j-th follow-up visit occurring at time

ti,j, i = 1, . . . , N , j = 1, . . . , ni. Let Yi(t)⇤ be the underlying true but unobserved

longitudinal process at time t � 0. We assume

Yi(t) = Yi(t)
⇤ + ✏l = Zi(t)�l +Ri(t)bi + ✏l, ✏l ⇠ N(0, �2

l ), bi ⇠ N(0,B), (2.3)

where Zi(t) and Ri(t) are the covariate vectors associated with fixed and random e↵ects,

respectively. The fixed e↵ect covariates Zi(t) = [1, Di(t),Xi, t, t2] include an intercept

12



Bayesian Joint Modeling
NY

i=1

p(Yi,Ai,Ti , Ti, �i | Xi,✓↵,�l,�d,✓v,✓s, bi, �
2
l , �

2
d)

/

NY

i=1

 
p(Ai,Ti | Yi,Xi,✓v,✓↵,�d, �

2
d)p(Yi | Ai,Ti ,Xi,�l, �

2
l , bi)p(Ti, �i | Xi,Yi,Ai,Ti ,�l,✓s,✓↵)

!
,

(2.8)

3 Optimizing Personalized Clinical Decisions

The previous section established our joint model, where the longitudinal and sur-

vival submodels are constructed similarly to standard literature with appropriate co-

variates, and the dosing and visitation submodel reflects empirical findings. Fitting

the dataset to this joint model is the first step in our overall framework for optimizing

clinician actions to maximize individual patient survival outcomes. In this section, we

will introduce the next step, which uses the model fitting results to compute the op-

timal actions. This is a similar set-up to many reinforcement learning (RL) problems,

where the goal is to optimize actions in an environment to maximize a reward (??).

The first step in constructing this optimization procedure is selecting an appropriate

individualized reward function, Ri. In our context, we use the median survival time,

which has less variance and a significant computational advantage over the survival

time itself. This choice eliminates the need to sample the survival process at each visit

and only requires computing each trajectory until the median survival time. To further

reduce the variance of the reward function Ri, we can define it to be the log of median

survival time:

Si(Mi) = 0.5 , Ri = log(Mi)

To formulate our optimization problem, we first define the action (clinician-controlled)

model versus environment model. Our joint model is composed of 3 submodels: longitu-

15

Marked temporal point 
process for visitations and 
dosages

Longitudinal creatinine
Survival



Optimal Treatment

Reinforcement learning: policy gradient 

and tacrolimus dosages. The joint likelihood can factor as (Note)8

NY

i=1

p(Yi,Ai,Ti , Ti, �i | Xi,✓↵,�l,�d,✓v,✓s, bi, �
2
l , �

2
d)

/

NY

i=1

 
p(Ai,Ti | Yi,Xi,✓v,✓↵,�d, �

2
d)| {z }

(2.2)

p(Yi | Ai,Ti ,Xi,�l, �
2
l , bi)| {z }

(2.4)

p(Ti, �i | Xi,Yi,Ai,Ti ,�l,✓s,✓↵)| {z }
(2.6)

!
,

(2.7)

where Ai,Ti = {(ti,1, Di,1), . . . , (ti,ni , Di,ni)}, Di = (Di,1, . . . , Di,ni), ti = (ti,1, . . . , ti,ni),

✓s = {s, �s1, �s2, �s3, �↵, h0, ⌘tox} and ✓v = {µ, �v1, �v2}. We complete the model

by imposing uninformative conjugate priors when possible: �d ⇠ N(�d0,⌃�d
), �2

d ⇠

IG(⇡d1, ⇡d2), �l ⇠ N(�l0,⌃�l
), �2

l ⇠ IG(⇡l1, ⇡l2), B ⇠ IW (⇡l3,⇧l4). When conjugacy

is unattainable for the visitation and survival parameters, we use normal and gamma

priors. Bayesian parameter estimation is performed with Markov chain Monte Carlo

(MCMC) methods: Gibbs sampling for parameters with conjugacy and Metropolis-

Hastings for parameters without.

NY

i=1

p(Yi,Ai,Ti , Ti, �i | Xi,✓↵,�l,�d,✓v,✓s, bi, �
2
l , �

2
d) (2.8)

3 Optimizing Personalized Clinical Decisions

The previous section established our joint model, where the longitudinal and sur-

vival submodels are constructed similarly to standard literature with appropriate co-

variates, and the dosing and visitation submodel reflects empirical findings. Fitting the

dataset to this joint model is the first step in our overall framework for optimizing clin-

ician actions to maximize individual patient survival outcomes. In this section, we will

introduce the next step, which uses the model fitting results to compute the optimal

actions. This is a similar set-up to many reinforcement learning (RL) problems, where

8note my changes. Also use | for conditional on. Please change others
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Action parameters:

Other parameters: 


• After estimating the model parameters, we will use a reinforcement learn-

ing framework to maximize a reward Ri to optimize treatment for patient

i.

• Denote ⇥ = (�⌫1,�⌫2, µ,�d) and the rest of parameters as �. Our goal is

to maximize the expected reward after integrating out the uncertainties

in the environmental parameters:

Gi =

Z
E�,⇥(Ri)p(�)d�

<latexit sha1_base64="0/mZwKYY6GambpkXlTIp/QPPn1c="></latexit>

�
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<latexit sha1_base64="2TxBRJu+xC/8CXgKsWzBou3lxlc=">AAACHnicbVDLSsNAFJ34rPUVdelmsBUUpCSi6LIogssqrRaaECbTWzt0JgkzE7GGfIkbf8WNC0UEV/o3Th+CrwMDh3Pu5c45YcKZ0o7zYU1MTk3PzBbmivMLi0vL9srqhYpTSaFBYx7LZkgUcBZBQzPNoZlIICLkcBn2jgf+5TVIxeKorvsJ+IJcRazDKNFGCuz9sieI7kqRCXLDBLuFPMi8ehc0yfHJF93BXtJlees8YFv1bb8c2CWn4gyB/xJ3TEpojFpgv3ntmKYCIk05UarlOon2MyI1oxzyopcqSAjtkStoGRoRAcrPhvFyvGmUNu7E0rxI46H6fSMjQqm+CM3kIIv67Q3E/7xWqjuHfsaiJNUQ0dGhTsqxjvGgK9xmEqjmfUMIlcz8FdMukYRq02jRlOD+jvyXXOxW3L3KwdluqXo0rqOA1tEG2kIuOkBVdIpqqIEoukMP6Ak9W/fWo/VivY5GJ6zxzhr6Aev9ExKGomU=</latexit>

maximize⇥
R
E⇥,�[Ri(T )]p(� | D)d�

<latexit sha1_base64="vzqh9dOBC6UfSY7p03++omZrqlM="></latexit>

Posterior distribution of �

<latexit sha1_base64="WJD7T37jaIgZvi1zmCQsyzeL6Mc=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CbaCp7JbhHosevFYwX5Au5Rsmm1js8mSZIWy9D948aCIV/+PN/+N6XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpaJIrRNJJeqF2BNORO0bZjhtBcriqOA024wvV343SeqNJPiwcxi6kd4LFjICDZW6lQH8YRVh+WKW3MzoHXi5aQCOVrD8tdgJEkSUWEIx1r3PTc2foqVYYTTeWmQaBpjMsVj2rdU4IhqP82unaMLq4xQKJUtYVCm/p5IcaT1LApsZ4TNRK96C/E/r5+Y8NpPmYgTQwVZLgoTjoxEi9fRiClKDJ9Zgoli9lZEJlhhYmxAJRuCt/ryOunUa95VrXFfrzRv8jiKcAbncAkeNKAJd9CCNhB4hGd4hTdHOi/Ou/OxbC04+cwp/IHz+QPPa46j</latexit>

Median survival time 



Optimal Treatment0 200 400 600 800 1000

7.
64

7.
65

7.
66

7.
67

7.
68

7.
69

SGD Iterations
M

ea
n 

R
ew

ar
d

0 200 400 600 800 1000

7.
68

7.
70

7.
72

7.
74

7.
76

SGD Iterations

M
ea

n 
R

ew
ar

d

(a) Patient S1 (b) Patient S2

2100 2150 2200

0.
00

0.
02

0.
04

0.
06

0.
08

Median Survival Time (Days)

De
ns

ity

Our Method
Regular visits every 1 month
Regular visits every 3 months
Regular visits every 6 months

2300 2350 2400

0.
00

0.
02

0.
04

0.
06

0.
08

Median Survival Time (Days)
De

ns
ity

Our Method
Regular visits every 1 month
Regular visits every 3 months
Regular visits every 6 months

(c) Patient S1 (d) Patient S2

Figure 4: Panels (a, b) plot the expected mean reward versus SGD iterations for two
randomly selected patients S1 and S2. Panels (c, d) plot the density of the predictive
median survival times under our method and the three alternative strategies for patients
S1 and S2.

respectively and thus implies a higher intensity around the peak time ⌫1: intuitively,

the optimized policy learns to be more certain about the “optimal peak time.”

In addition, to illustrate the advantage of optimizing both follow-up schedules and
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Connection to Offline Reinforcement Learning

Offline reinforcement learning: contextual bandits 
(Dudik et al., 2011), sequential decision-making 
problems (Jiang and Li, 2015). 




Markov Decision Process

A Markov Decision Process is a tuple 
•  is the state space
•  is the action space
•  is the transition dynamics
•  is the reward function
• : the initial state distribution
• : discount factor

M = (𝒮, 𝒜, T, r, μ0, γ)
𝒮
𝒜
T(s′￼ ∣ s, a)
r(s, a)
μ0
γ ∈ (0,1)

π * = argmax𝔼π,T,μ0
[

∞

∑
t=0

γtr(st, at)]

Denote  the policy function,π(a ∣ s)



MOPO: Model-based Offline Policy Optimization

Uncertainty-penalized MDP: 

M̃ = (𝒮, 𝒜, ̂T, r̃, μ0, γ)

Yu et al., 2020

Estimated dynamic model



Take-home Messages

• Easy and flexible modeling for individual 
treatment effects


• Uncertainty quantification in decision 
process


• Complex settings

What BNP brings to treatment estimation from 
observational data:


