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Abstract 

To support stable dynamic graph layout and 

reveal time features hidden in the data, we 

propose a joint discovery method that extracts 

the skeleton of a dynamic graph by combining 

graph structural information and clustering 

algorithms, and explores time-sequence data 

features mainly based on graph community 

patterns. In addition, we propose a discrete 

exploration method that helps users better 

understand roles, connections, and interactions 

in the network, through dimensionality 

reduction views. We integrate these methods to 

design a visualization ana-lysis system called 

TimesliceVis, which helps users construct 

online dynamic graphs and explore and 

understand the temporal features of network 

graphs. Finally, through case studies on real-

world data, we demonstrate the practicality and 

effectiveness of TimesliceVis in perceiving 

and interpreting network based on structural 

information. 
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1.  INTRODUCTION 

Dynamic graph visualization preserves 

structure during animation. Methods include 

animation, timeline, and mixed approaches[1]. 

Online methods, a type of animation, use 

previous layout information to position new 

nodes, with stronger expressiveness. However, 

limitations exist in expressing complex 

information, data representation, and inter-

action methods. 

To visualize complex Twitter network data, 

compression methods like feature extraction 

are needed. Our paper proposes a 

multidimensional exploration method that 

incorporates time-series information into 

online incremental dynamic graphs. We use 

clustering algorithms to group nodes into topic 

communities, embed time-informed graphs 

into topic network graphs, and visualize 

changes and correlations using dimensionality 

reduction algorithms. We demonstrate the 

feasibility and effectiveness of our method 

through real data case experiments.The main 

contributions of this paper are: proposing an 

online incremental graph layout  

algorithm that maintains user mental maps, 

designing a feature-based community classi-

fication time-series demonstration method, 

proposing a multidimensional joint explo-

ration method for visualizing time-series 

features of dynamic graphs. 

2. RELATED WORK 

2.1 Visualization Methods for Temporal Data 

Feature 

Online methods use initial layouts to create 

new layouts at the next time step and enhance 

aesthetics through computation. These layout 

problems arise from interactive and real-time 

monitoring of dynamic graphs with unknown 

time series. Online dynamic graph layout 
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methods include Bayesian decision theory 

combined with force-directed layout by 

Brandes et al. [2], global structure preservation 

with user-modifiable continuous layouts by 

Frishman et al.[3] Lin et al. [4] proposed an 

online algorithm with a costly cost function 

considering aesthetics and stability, old and 

stable structure preservation using vertex age 

by Gorochowski et al. [5], improved drawing 

efficiency through initial vertex displacement 

by Hayashi et al. [6], node similarity query 

method for large-scale dynamic graphs 

proposed by Wang et al. [7], and movement 

simulation as an inverse Markov process for 

convergence distance constraint by Sheng et al. 

[8].Specialized visualization tools are needed 

for temporal data, including History Flow [9] 

for text editing, time curves [10], and 

TextFlow [11] for topic mining. General 

techniques such as small multiples [12], time 

planes, animation, and 3D cubes can be used, 

but complex visualization may suffer from data 

overload. Nakazawa et al. [13] used clustering 

and different colors for time, while Jingming et 

al. [14] proposed an interactive display method 

based on collaborative network visualization, 

mapping nodes and edges onto the time axis. 

Cakmak E et al. [15] proposed a multiscale 

snapshot approach for handling large-scale, 

high-dimensional dynamic graph data, along 

with a multiscale visual summarization tech-

nique for simplifying the visualization and 

analysis of dynamic graph data. Federico P et 

al. [16] proposes the VATSON to integrates 

visualization and analysis to aid understanding 

of complex temporal relationships in social 

networks. Ahn J et al. [17] propose a novel 

method for temporal visualization that aids 

researchers in gaining deeper insights into 

social interactions and relationship dynamics in 

social networks. 

2.2 Graph feature extraction methods 

Hierarchical Agglomerative Clustering (HAC) 

merges the closest clusters until a termination 

criterion is met. Jafarzadegan et al. [18] 

combined different levels of clustering using 

PCA. HAC is flexible, as it doesn't require a 

fixed K value like K-MEANS and KNN. 

Dimensionality reduction is often necessary to 

reduce computational complexity. Principal 

Component Analysis (PCA)[19] maps high-

dimensional data to a low-dimensional space, 

while Linear Discriminant Analysis (LDA) 

extracts topics from a document set. Liu et al. 

[20] used graph signal processing and semi-

supervised learning for feature extraction, 

while Xiao et al. [21] used convolutional 

neural networks. Wang Y et al. [22] propose a 

novel non-uniform time-slicing approach for 

dynamic graphs based on visual complexity to 

aid users in analyzing and interpreting graph 

evolution. 

To summarize, displaying relationships bet-

ween temporal data in incremental layouts can 

be challenging for maintaining users' mental 

maps. Analyzing dynamics of temporal node-

link diagrams and integrating temporal features 

into analysis, as well as designing visualization 

modules for dynamic graph temporal features, 

are all challenges. Existing solutions include 

heat maps, network diagrams, and changing 

node sizes/colors to display changes in link 

strength or number. 

3. METHOD 

 
Figure 1 : System Flowchart 

This paper proposes a collaborative analysis 

process As shown in Figure 1. in four steps for 

online dynamic graph visualization and 

exploring temporal features of network data: (1) 

Collect data from various sources such as 

social network data, animal relationship 

network, information propagation network, etc. 

(2) Extract and transform information using 

clustering and dimension reduction algorithms 

to explore network graph features and extract 

temporal features. (3) Construct a model 

linking network flow data and dynamic graph, 

embed time information into the network graph, 

and link clusters and time features. (4) 

Interactive visualization demonstration using 

various components such as dynamic graphs, 

clustering diagrams, theme river graphs, heat 

maps, etc., to discover temporal features and 

mark changes between related nodes or clusters 

through click events. 

3.1 Online Dynamic Graph Layout Algorithm 



We propose a constrained range for new node 

convergence and a synchronized constraint 

edge layout algorithm for online dynamic 

graphs to address time performance issues in 

incremental layouts while preserving the user's 

mental map. Inspired by Gorochowski[5] and 

others, we introduce the concept of levels to 

restrict node motion in dynamic graphs, 

reducing convergence time. At time t, a node's 

level is set, with the initial level of new nodes 

being 1. After dynamic graph data iteration, 

each node's level is reassessed. 

 
Figure 2 :  Node-Adding algorithm 

This article proposes a centroid region binding 

(CRB) algorithm for incremental layouts, 

specifically for single-parent nodes in new 

nodes. Position data is randomly generated on 

the canvas based on the parent node's location 

in different block areas. The new node then 

converges to the region divided by energy level 

according to its parent node, with a certain 

convergence radius and positioning direction to 

reduce total layout energy. For multiple parent 

nodes, the centroid position of the combined 

polygon formed by the parent node group and 

the new node group is determined using the 

polygon centroid formula. The centroid 

position is treated as a pseudo-parent node, and 

the new node converges towards the centroid 

in the direction of the pseudo-parent node to 

achieve local convergence of parent nodes 

towards the centroid. To improve view 

readability, the FNL (Free Node Layout) 

algorithm is proposed for free nodes, which are 

not connected to their parent nodes or any 

reserved nodes from the previous time step. 

The FNL algorithm optimizes the distance 

between new nodes to prevent node stacking 

and edge crossing. The canvas area is divided 

into K equal regions based on data scale, and 

free nodes are placed in the least populated 

block. If free nodes are added in pairs, the 

position of the preceding node is randomly 

generated, and the CRB algorithm is used to 

converge the succeeding node to the 

convergence domain of the preceding node, 

ensuring that attributes of newly added nodes 

are related to the nodes in the view. 

In this paper, "additional edges" are newly 

added edges in the graph data. However, 

generating these edges can create many 

crossings, which reduces readability. To 

address this, the paper proposes the 

Community Node Drift (CND) algorithm 

(Figure 3). CND considers the community and 

position changes of related points to minimize 

changes to the community layout while 

increasing additional edge connections. We use 

the CCBD algorithm (Figure 4) to partition 

nodes into communities based on their degree, 

avoiding giant and discrete communities. 

CND's design philosophy is to reduce edge 

crossings by adjusting community positions. If 

additional edges are within the same 

community, the community is subdivided and 

relocation convergence is calculated. 

 
Figure 3: CND Algorithm 

 
Figure 4: CCBD 

3.2 Dynamic Graph Temporal Feature 

Extraction Method 

The HACed algorithm (Figure 5), which 

combines HAC with edge propagation 

algorithms, improves clustering results, 

computational efficiency, scalability, and 

flexibility. It can be customized for specific 

datasets and applications. However, the 

algorithm still faces the issue of different initial 

node selections for community classification. 

To address this, we introduced degree sorting 

rules into the clustering method and combined 

them with node degree sorting HAC, resulting 

in improved accuracy, reduced computational 

complexity, and increased interpretability. The 

HACed algorithm considers both Euclidean 

distance and node degree as joint decision 

criteria, selecting nodes with larger degrees as 

initial values when Euclidean distance is 



similar, resulting in more consistent 

communities and facilitating user judgment of 

different themes. 

The challenge in representing temporal data in 

a dynamic network topology graph is designing 

a clear and intuitive graphic that can depict 

node relationships and changes over time. 

Current methods, such as color saturation and 

text labels, have limitations and may cause 

misunderstandings. To address this, we 

propose using a discrete bar graph to visualize 

time attributes and using different color 

saturation to distinguish time steps. Our design 

embeds attribute value changes between nodes 

into edge links(figure 6), and the color changes 

based on the magnitude of the attribute change. 

Saturation values for the segments are 

determined by sample variance. 

 
Figure 5: HACed 

 
Figure 6: Embedded representation 

We designed a 1.5-dimensional collision river 

map as a more effective visualization method 

than a two-dimensional dynamic node-link 

diagram to illustrate changes in network 

information after dynamic increments. This 

representation captures time information and 

changes in node relationships more effectively 

than one-dimensional or two-dimensional 

representations. The 1.5-dimensional repress-

entation combines time information and 

changes in node relationships, making it easier 

for users to understand time patterns and trends 

of the graph. This visualization method is 

especially useful for analyzing dynamic graphs 

and identifying potential relationships. 

To explore position data changes of the 

community-based two-dimensional node graph 

at different time points in combination with the 

HACed algorithm, we introduced the Latent 

Dirichlet Allocation (LDA) technique to 

reduce the dimensionality of the network 

topology graph. LDA dimensionality reduction 

technology can help users more effectively 

analyze text data, reduce data dimensions 

while retaining the main information, and 

improve interpretability of the results. 

Our visualization module uses the y-axis for 

node projection on the LDA plane and the x-

axis for displaying time step data. LDA 

classifies nodes based on topic attributes, as 

shown in Figure 7. The perpendicular 

projection of all nodes in a node cluster onto 

the LDA line represents the community's 

relative position at that time step. Community 

positions change on the y-axis as time steps 

increase. We calculate "steady-state" or 

"active" communities by measuring 

displacement at different time steps..  

 
Figure 7: LDA dimensionality river map. 

4. SYSTEM AND CASE STUDY 

The TimesliceVis system is an online tool for 

dynamic graph temporal feature analysis. It 

uses a top-down approach with a 

comprehensive temporal feature analysis 

interpreter to help users obtain temporal feature 

information from their target network 

interactively and progressively. The system has 

six main components: (Figure 8A) a dynamic 

node-link diagram displaying information from 

the target dynamic network, ((Figure 8B) 

views visualizing the backbone of the diagram 

obtained through graph clustering, (Figure 8C) 

showing the closeness of inter-cluster 

connections over time, (Figure 8D) providing a 

reduced-dimensional representation of 

communities in the target dynamic network, 

(Figure 8E) serving as an information and 

control panel for obtaining global and single-

node information based on user-set parameters, 

and (Figure 8F) displaying dynamic value 

variables and other network-related 

information. 

4.1 MVBT datasets 

The MVBT dataset, collected by Davis et al. 

[23] at BHP, is a dynamic network data model 

of mammal information (voles). It was 



observed multiple times from March to 

November, with data size increasing from 25 

nodes and 33 edges to a peak of 163 nodes and 

253 edges. We analyzed the temporal features 

of the MVBT dataset, shown in Figure 8. The 

visual representations reveal changes in 

relationships between voles over time. The 

community network (Figure 8B) indicates high 

genetic correlation among most voles, possibly 

forming a subspecies, with some isolated 

communities suggesting population diversity. 

The individual relationship between vole 

communities (Figure 8C) shows low coupling 

relationships, indicating breeding cycles. The 

temporal process of vole groups on the LDA 

dimensionality reduction graph (Figure 8D) 

reveals relatively high genetic correlation 

among vole groups in the BHP generation. 

Changes in group composition over time 

suggest group recombination, with some vole 

groups disappearing while others expanding on 

the river map. 

 
Figure 8：MVBT dataset visualization 

4.2  Newcomb datasets 

Newcomb Datasets contain data on Newcomb's 

personal social life, represented as a network 

with nodes for individuals and edges for social 

relationships [24]. In Figure 9(A), node color 

changes from step 5 to step 15 indicate stable 

social circles around Newcomb in terms of 

people and connections. Figure 9(B-a) shows a 

giant community connected to almost all sub-

communities, except for one sub-community 

with no social relationship with the main circle. 

However, Figure 9(B-b) shows a connection 

between two closely related communities. We 

selected the number 3 community, which has a 

relationship with the main circle, as shown in 

Figure 9(C-a). In the third time step, the river 

projection width of the two selected 

communities has reduced, possibly due to 

members joining other communities. 

According to Figure 9(C-b), connectivity 

between members within the communities 

remains high and stable, indicating maintained 

social relationships between the two 

communities. 

 
Figure 9：Newcomb datasets 

5. CONCLUSION 

In this paper, we propose a dynamic graph 

layout method that restricts node and edge 

movements. We introduce a visualization 

approach called TimesliceVis, which explores 

the temporal features of dynamic graphs based 

on embedded temporal connectivity patterns 

and reduced-dimensional community 

distribution encoding. Our system integrates 

dynamic data visualization and temporal 

feature analysis capabilities. Through 

interactive exploration, users can gradually 

gain insights into the structural information of 

nodes and analyze changes in node 

communities in dynamic networks. In the 

future, we plan to adapt our system for large-

scale datasets to broaden its applicability, and 

also consider incorporating rich contextual 

information for each node. 

References 

[1] Beck F., Burch M., Diehl S., et al. A 

taxonomy and survey of dynamic graph 

visualization. Computer Graphics Forum 

36, 1 (2017), 133–159. 

[2] Brandes U, Wagner D. A Bayesian 

paradigm for dynamic graph layout[M] 

//Graph Drawing, Heidelberg: Springer, 

1997: 236-247 

[3] Frishman Y, Tal A. Online dynamic graph 

drawing[J]. IEEE Transactions on 

Visualization and Computer Graphics, 

2008, 14(4): 727-740  

[4]  Lin C C, Lee Y Y, Yen H C. Mental map 

preserving graph drawing using simulated 



annealing[J]. Information Science, 2011, 

181(19): 4253-4272 

[5] Gorochowski T E, Dibernardo M, Grierson 

C S. Using aging to visually uncover 

evolutionary processes on networks[J]. 

IEEE Transactions on Visualization and 

Computer Graphics, 2012, 18(8): 1343- 

1352  

[6] Hayashi A, Matsubayashi T, Hoshide TI, et 

al. Initial positioning method for online and 

real time dynamic graph drawing for time 

varying data[C] //Proceedings of the 17th 

International Conference on Information 

Visualisation. Washington D C: IEEE 

Computer Society Press, 2013: 435-444 

[7] Junlu W, Yulong S, Baoyan S. Node 

Similarity Top-k Query of the Large-Scale 

Dynamic Graph With Weak Repeated Path 

Constraint[J]. IEEE Access, 2019, 7: 

64431-64441 

[8] Sheng S Y, Chen S T, Dong X J, et al. 

Inverse Markov Process Based Constrained 

Dynamic Graph Layout[J]. Journal of 

Computer Science and Technology, 2021, 

36(3): 707-718. 

[9] Viégas F B, Wattenberg M, Dave K. 

Studying cooperation and conflict between 

authors with history flow visualizations[C] 

//Proceedings of the SIGCHI conference on 

Human factors in computing systems. 2004: 

575-582.  

[10]  Bach B, Shi C, Heulot N, et al. Time 

curves: folding time to visualize patterns of 

temporal evolution in data. IEEE T rans 

Visualizat Comp Graph 2015; 22(1): 559– 

568.  

[11] Cui W , Liu S, T an L, et al. TextFlow: 

towards better understanding of evolving 

topics in text. IEEE T rans Visualizat 

Comp Graph 2011; 17(12): 2412–2421. 

[12] Bach B, Dragicevic P, Archambault D, 

et al. A review of temporal data 

visualizations based on space-time cube 

operations. In: Borgo R, Maciejewski R 

and Viola I (eds) Eurographics Conference 

on Visualization (EuroVis). Swansea, 

Wales, United Kingdom: The Eurographics 

Association, 2014, pp. 23–41. 

[13] Nakazawa R, Itoh T and Saito T. A 

visualization of research papers based on 

the topics and citation net- work. In: 2015 

19th international conference on 

information visualisation (IV), Barcelona, 

22–24 July, pp. 283–289. New York: IEEE.  

[14] Jing M, Li X, Zhang L. Interactive 

temporal display through collaboration 

networks visualization[J]. Information 

Visualization, 2019, 18(2): 268-280. 

[15] Cakmak E, Schlegel U, Jäckle D, et al. 

Multiscale snapshots: Visual analysis of 

temporal summaries in dynamic graphs[J]. 

IEEE Transactions on Visualization and 

Computer Graphics, 2020, 27(2): 517-527. 

[16] Federico P, Aigner W, Miksch S, et al. 

A visual analytics approach to dynamic 

social networks[C]//Proceedings of the 

11th International Conference on 

Knowledge Management and Knowledge 

Technologies. 2011: 1-8. 

[17] Ahn J, Taieb-Maimon M, Sopan A, et 
al. Temporal visualization of social network 
dynamics: Prototypes for nation of 
neighbors[C]//Social Computing, 
Behavioral-Cultural Modeling and 
Prediction: 4th International Conference, 
SBP 2011, College Park, MD, USA, March 
29-31, 2011. Proceedings 4. Springer 
Berlin Heidelberg, 2011: 309-316. 

[18] Jafarzadegan M, Safi-Esfahani F, 

Beheshti Z. Combining hierarchical 

clustering approaches using the PCA 

method[J]. Expert Systems with 

Applications, 2019, 137: 1-10 

[19] Dunteman G H. Principal components 

analysis[M]. Sage, 1989. 

[20] Liu Z, Lai Z, Ou W, et al. Structured 

optimal graph based sparse feature 

extraction for semi-supervised learning[J]. 

Signal Processing, 2020, 170: 107456. 

[21] Xiao G, Li J, Chen Y, et al. MalFCS: 

An effective malware classification fram-

ework with automated feature extr-action 

based on deep convolutional neural netw-

orks[J]. Journal of Parallel and Distributed 

Computing, 2020, 141: 49-58. 

[22] Wang Y, Archambault D, Haleem H, 

et al. Nonuniform timeslicing of dynamic 

graphs based on visual 

complexity[C]//2019 IEEE Visualization 

Conference (VIS). IEEE, 2019: 1-5. 

[23] Davis, Stephen, et al. "Spatial analyses 

of wildlife contact networks." Journal of 

the Royal Society Interface 12.102 (2015): 

2014100 

[24]  Newcomb T M. The acquaintance 

process: Looking mainly backward[J]. 

Journal of Personality and Social 

Psychology, 1978, 36(10): 1075. 



 


