
George A. Papadopoulos
Florian Rademacher
Jacopo Soldani (Eds.)

LN
CS

 1
41

83

Service-Oriented
and Cloud Computing
10th IFIP WG 6.12 European Conference, ESOCC 2023
Larnaca, Cyprus, October 24–25, 2023
Proceedings

Lecture Notes in Computer Science 14183
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

George A. Papadopoulos · Florian Rademacher ·
Jacopo Soldani
Editors

Service-Oriented
and Cloud Computing
10th IFIP WG 6.12 European Conference, ESOCC 2023
Larnaca, Cyprus, October 24–25, 2023
Proceedings

Editors
George A. Papadopoulos
University of Cyprus
Nicosia, Cyprus

Jacopo Soldani
University of Pisa
Pisa, Italy

Florian Rademacher
RWTH Aachen University
Aachen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-46234-4 ISBN 978-3-031-46235-1 (eBook)
https://doi.org/10.1007/978-3-031-46235-1

© IFIP International Federation for Information Processing 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-9250-4916
https://orcid.org/0000-0002-2435-3543
https://orcid.org/0000-0003-0784-9245
https://doi.org/10.1007/978-3-031-46235-1

Preface

Service-oriented and cloud computing have made a huge impact, both on the software
industry and on the research community. Today, service and cloud technologies are
applied to build large-scale software landscapes and to provide single software services
to end users. Services are nowadays developed and deployed independently, based on a
variety of technologies, and freely composed, which is quite an important fact from a
business perspective. Similarly, cloud computing aims at enabling flexibility by offering
a centralized sharing of resources. The industry’s need for agile and flexible software
and IT systems has made cloud computing the dominating paradigm for provisioning
computational resources in a scalable, on-demand fashion. Nevertheless, service devel-
opers, providers, and integrators still need to create methods, tools, and techniques to
support cost-effective and secure development, as well as the use of dependable devices,
platforms, services, and service-oriented applications in the cloud.

The European Conference on Service-Oriented and Cloud Computing (ESOCC)
is the premier European conference on advances in the state of the art and practice
of service-oriented computing and cloud computing. ESOCC’s main objectives are to
facilitate the exchange between researchers and practitioners in the areas of service-
oriented computing and cloud computing, and to explore new trends in those areas and
foster future collaborations in Europe and beyond. The tenth edition of ESOCC, ESOCC
2023, was held in Larnaca (Cyprus) during October 24–25, 2023, under the auspices of
the University of Cyprus.

ESOCC 2023 was a multi-event conference that covered both an academic and
industrial audience with its main research track focusing on the presentation of cutting-
edge research in both the service-oriented and cloud computing areas. In conjunction,
a Projects and Industry Track was held, bringing together academia and industry by
showcasing the application of service-oriented and cloud computing research, especially
in the form of case studies. Overall, 40 submissions were received, out of which 12
outstanding full and four short papers were accepted. Thus, the overall acceptance rate
for full papers was 30%.

Each submission was peer-reviewed by three main reviewers, comprising either
Program Committee (PC) members or their colleagues. The PC Chairs would like to
thank all the reviewers that participated in the reviewing process. Their comments were
essential for improving the quality of the received manuscripts and especially for giving
constructive comments to the authors of papers that, in their current forms, were rejected
from ESOCC 2023.

The attendees of ESOCC had the opportunity to follow two outstanding keynotes
that were part of the conference program. The first keynote was conducted by George
Pallis of the University of Cyprus. The keynote presented three novel adaptive moni-
toring frameworks and a fog computing emulation framework. The frameworks allow
for reducing energy consumption and data volume transmitted over edge computing
networks, and the experiment-based optimization of complex fog topologies.

vi Preface

The second keynote was conducted by Herodotos Herodotou of Cyprus University
of Technology. This keynote first reviewed, among other things, the current state of the
art in big data stream processing and edge-based stream processing, cloud resource man-
agement and tuning, and machine and deep learning on data streams. Next, it presented
a general architecture design for an optimized, multi-cloud and edge orchestrator that
enables machine and deep learning over voluminous and heterogeneous data streams on
hybrid cloud and edge settings. This orchestrator also includes necessary functionalities
for practical and scalable processing.

Additional events held at ESOCC 2023 included the PhD Symposium, enabling
PhD students to present their work in front of real experts, as well as the Projects and
Industry Track, providing researchers and practitioners with the opportunity to present
the main research results that they achieved in the context of currently operating research
and industrial projects. The papers of both events are also included in this proceedings
volume.

The PC Chairs and the General Chair would like to gratefully thank all the people
involved inmaking ESOCC2023 a success. This includes both the PCmembers and their
colleagues who assisted in the reviews, as well as the organizers of the PhD Symposium
and theProjects and IndustryTrack. TheChairs also thankEasyConferencesLtd. for their
administrative support and local organization. Finally, a special thanks to all the authors
of the manuscripts submitted to ESOCC 2023, the presenters of the accepted papers who
gave interesting and fascinating presentations of their work, and the active attendees
of the conference who initiated interesting discussions and gave fruitful feedback to
the presenters. All these people have enabled not only the successful organization and
execution of ESOCC2023 but also an active and vibrant community, which continuously
contributes to research in service-oriented and cloud computing. This also encourages
ESOCC to keep supporting and enlarging its community, by providing a forum in which
new research outcomes can be shared and discussions on how to achieve greater impact
can be held.

September 2023 George A. Papadopoulos
Florian Rademacher

Jacopo Soldani

Organization

Organizing Committee

General Chair

George A. Papadopoulos University of Cyprus, Cyprus

Program Chairs

Florian Rademacher RWTH Aachen University, Germany
Jacopo Soldani University of Pisa, Italy

Projects and Industry Track Chairs

Andrea Janes FHV Vorarlberg University of Applied Sciences,
Austria

Valentina Lenarduzzi University of Oulu, Finland

PhD Symposium Chairs

Stefano Forti University of Pisa, Italy
Christian Zirpins Karlsruhe University of Applied Sciences,

Germany

Steering Committee

Antonio Brogi University of Pisa, Italy
Schahram Dustdar TU Wien, Austria
Paul Grefen Eindhoven University of Technology,

The Netherlands
Einar Broch Johnson University of Oslo, Norway
Kyriakos Kritikos ICS-FORTH, Greece
Winfried Lamersdorf University of Hamburg, Germany
Flavio de Paoli University of Milano-Bicocca, Italy
Ernesto Pimentel University of Malaga, Spain
Pierluigi Plebani Politecnico di Milano, Italy

viii Organization

Ulf Schreier Hochschule Furtwangen University, Germany
Stefan Schulte TU Wien, Austria
Massimo Villari University of Messina, Italy
Olaf Zimmermann Eastern Switzerland University of Applied

Sciences, Switzerland
Wolf Zimmermann Martin Luther University Halle-Wittenberg,

Germany

Program Committee

Nour Ali Brunel University London, UK
Vasilios Andrikopoulos University of Groningen, The Netherlands
Hernán Astudillo Federico Santa María Technical University, Chile
Luciano Baresi Politecnico di Milano, Italy
Javier Berrocal Universidad de Extremadura, Spain
Justus Bogner University of Stuttgart, Germany
Uwe Breitenbücher Reutlingen University, Germany
Antonio Brogi University of Pisa, Italy
Tomás Cerný Baylor University, USA
Marco Comuzzi Ulsan National Institute of Science and

Technology, South Korea
Elisabetta Di Nitto Politecnico di Milano, Italy
Dario Di Nucci University of Salerno, Italy
Schahram Dustdar TU Wien, Austria
Rik Eshuis Eindhoven University of Technology,

The Netherlands
Stefano Forti University of Pisa, Italy
Jonas Fritzsch University of Stuttgart, Germany
Ilche Georgievski University of Stuttgart, Germany
Saverio Giallorenzo University of Bologna, Italy
Paul Grefen Eindhoven University of Technology,

The Netherlands
Andrea Janes FHV Vorarlberg University of Applied Sciences,

Austria
Blagovesta Kostova Swiss Federal Institute of Technology (EPFL),

Switzerland
Indika Kumara Tilburg University, The Netherlands
Valentina Lenarduzzi University of Oulu, Finland
Zoltan Adam Mann University of Amsterdam, The Netherlands
Jacopo Massa University of Pisa, Italy
Jacopo Mauro University of Southern Denmark, Denmark

Organization ix

José Merseguer University of Zaragoza, Spain
Fabrizio Montesi University of Southern Denmark, Denmark
Phu Nguyen SINTEF, Norway
Claus Pahl Free University of Bozen-Bolzano, Italy
Francisco Ponce UTFSM, Chile
George A. Papadopoulos University of Cyprus, Cyprus
Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Larisa Safina Inria Lille – Nord Europe, France
Nuno Santos Natixis, Portugal
Ulf Schreier Furtwangen University, Germany
Stefan Schulte Hamburg University of Technology, Germany
Davide Taibi Tampere University, Finland
Rudrajit Tapadar Microsoft, USA
Orazio Tomarchio University of Catania, Italy
Massimo Villari University of Messina, Italy
Philip Wizenty Dortmund University of Applied Sciences and

Arts, Germany
Robert Woitsch BOC ProductsServices AG, Austria
Gianluigi Zavattaro University of Bologna, Italy
Olaf Zimmermann Eastern Switzerland University of Applied

Sciences, Switzerland
Wolf Zimmermann Martin Luther University Halle-Wittenberg,

Germany
Christian Zirpins Karlsruhe University of Applied Sciences,

Germany

Additional Reviewers

Nuha Alshuqayran
Alessandro Bocci
Jose Carrasco
Rafael García-Luque
Stefan Kapferer
Angelo Marchese
Andrea Melis
Minh-Tri Nguyen
José Antonio Peregrina Pérez
Dan Plyukhin
Saulo S. de Toledo

x Organization

Conference Logo

Sponsors

International Federation for Information Processing

Springer and Springer LNCS

Microservices Community

Contents

Microservices

µXL: Explainable Lead Generation with Microservices and Hypothetical
Answers . 3

Luís Cruz-Filipe, Sofia Kostopoulou, Fabrizio Montesi, and Jonas Vistrup

One Microservice per Developer: Is This the Trend in OSS? 19
Dario Amoroso d’Aragona, Xiaozhou Li, Tomas Cerny, Andrea Janes,
Valentina Lenarduzzi, and Davide Taibi

End-to-End Test Coverage Metrics in Microservice Systems:
An Automated Approach . 35

Amr S. Abdelfattah, Tomas Cerny, Jorge Yero Salazar, Austin Lehman,
Joshua Hunter, Ashley Bickham, and Davide Taibi

Quality of Service

Time-Aware QoS Web Service Selection Using Collaborative Filtering:
A Literature Review . 55

Ezdehar Jawabreh and Adel Taweel

Enhanced Time-Aware Collaborative Filtering for QoS Web Service
Prediction . 70

Ezdehar Jawabreh and Adel Taweel

Comparison of Performance and Costs of CaaS and RDBaaS Services 84
Piotr Karwaczyński, Mariusz Wasielewski, and Jan Kwiatkowski

Service Orchestration

Horizontal Scaling of Transaction-Creating Machines for Blockchains 103
Ole Delzer, Ingo Weber, Richard Hobeck, and Stefan Schulte

Uncovering Effective Roles and Tasks for Fog Systems . 119
Maximilian Blume, Sebastian Lins, and Ali Sunyaev

Cooperative Virtual Machine Placement . 136
José G. Quenum and Samir Aknine

xii Contents

Edge Computing

AMulti-pronged Self-adaptive Controller for AnalyzingMisconfigurations
for Kubernetes Clusters and IoT Edge Devices . 153

Areeg Samir, Abdo Al-Wosabi, Mohsin Khan, and Håvard Dagenborg

Adaptive Controller to Identify Misconfigurations and Optimize
the Performance of Kubernetes Clusters and IoT Edge Devices 170

Areeg Samir and Håvard Dagenborg

Streamlining XR Application Deployment with a Localized Docker
Registry at the Edge . 188

Antonios Makris, Evangelos Psomakelis, Ioannis Korontanis,
Theodoros Theodoropoulos, Antonis Protopsaltis, Maria Pateraki,
Zbyszek Ledwoń, Christos Diou, Dimosthenis Anagnostopoulos,
and Konstantinos Tserpes

PhD Symposium

Towards Cloud Storage Tier Optimization with Rule-Based Classification 205
Akif Quddus Khan, Nikolay Nikolov, Mihhail Matskin, Radu Prodan,
Christoph Bussler, Dumitru Roman, and Ahmet Soylu

Industry Projects Track

Towards a Decentralised Federated Learning Based Compute Continuum
Framework . 219

Mohamad Moussa, Philippe Glass, Nabil Abdennahder,
Giovanna Di Marzo Serugendo, and Raphaël Couturier

Detecting Model Changes in Organisational Processes: A Cloud-Based
Approach . 231

J. Fabra, V. Gallego-Fontenla, J. C. Vidal, J. García de Quirós,
P. Álvarez, M. Lama, A. Bugarín, and A. Ramos-Soto

Short Papers

A Taxonomy for Workload Deployment Orchestration in the Edge-Cloud
Continuum . 239

Toon Albers, Mattia Fogli, Edwin Harmsma, Elena Lazovik,
and Harrie Bastiaansen

Contents xiii

Intent-Based AI-Enhanced Service Orchestration for Application
Deployment and Execution in the Cloud Continuum . 251

Efthymios Chondrogiannis, Efstathios Karanastasis,
Vassiliki Andronikou, Adrian Spătaru, Anastassios Nanos,
Aristotelis Kretsis, and Panagiotis Kokkinos

Optimizing the Cost-Performance Ratio of FaaS Deployments 263
Richard Patsch and Karl Michael Göschka

The Microservice Dependency Matrix . 276
Amr S. Abdelfattah and Tomas Cerny

Author Index . 289

Microservices

µXL: Explainable Lead Generation
with Microservices and Hypothetical

Answers

Luís Cruz-Filipe , Sofia Kostopoulou , Fabrizio Montesi ,
and Jonas Vistrup(B)

Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark

{lcf,fmontesi,vistrup}@imada.sdu.dk, skos@sdu.dk

Abstract. Lead generation refers to the identification of potential topics
(the ‘leads’) of importance for journalists to report on. In this paper we
present a new lead generation tool based on a microservice architecture,
which includes a component of explainable AI. The lead generation tool
collects and stores historical and real-time data from a web source, like
Google Trends, and generates current and future leads. These leads are
produced by an engine for hypothetical reasoning based on logical rules,
which is a novel implementation of a recent theory. Finally, the leads are
displayed on a web interface for end users, in particular journalists. This
interface provides information on why a specific topic is or may become
a lead, assisting journalists in deciding where to focus their attention.
We carry out an empirical evaluation of the performance of our tool.

Keywords: Lead generation · Microservices · Explainable AI

1 Introduction

Background. Journalists at news media organisations can regularly come across
a plethora of available information and events from various online data sources,
including social media. Therefore, it is of great significance to explore automated
procedures that can support journalists in dealing efficiently with such continu-
ous streams of real-time data. This explains why AI in journalism, or automat-
ed/computational journalism, has been intensely studied in the last years.

In this article, we are interested in automated support for lead generation.
That is, supporting journalists with useful information about what they could
report on. Lead generation is connected to trend detection and prediction. Trend-
ing topic detection is a problem that has been researched extensively for the
specific application domain [1,13]. In another line of research, there are several
works that try to predict trending topics, news, or users’ interest in advance.

Work partially supported by Villum Fonden, grants no. 29518 and 50079, and the
Independent Research Fund Denmark, grant no. 0135-00219.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-46235-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_1&domain=pdf
http://orcid.org/0000-0002-7866-7484
http://orcid.org/0000-0002-5557-1295
http://orcid.org/0000-0003-4666-901X
http://orcid.org/0000-0001-7704-3656
https://doi.org/10.1007/978-3-031-46235-1_1

4 L. Cruz-Filipe et al.

For instance, the authors in [5] aim to predict trending keywords, the work in
[18] targets forecasting article popularity, and [20] focuses on the prediction of
future users’ interests. Automated news generation is another field of research
that received much attention by researchers. The authors in [12] present an archi-
tecture for automated journalism and in [10] they propose an automatic news
generation solution by integrating audio, video, and text information. All the
aforementioned works, even though they are closely related, do not tackle the
challenging problem of alerting journalists about imminent leads for potential
future articles. In this direction, the ‘Lead Locator’ tool [6] suggests locations
relevant to political interest and produces ‘tip sheets’ for reporters.

Motivation. Our motivation for this work stems from a collaboration with media
companies in Denmark,1 which elicited a number of requirements that are not
met by current solutions for lead generation. The first requirement is explainabil-
ity: the system should present its reasoning for the suggestions that it brings for-
ward, such that the journalist can apply their own intuition as to how promising
a lead is. (In general, explanations can be crucial in guiding journalists towards
valuable reporting decisions.) The second requirement is flexibility: the system
should be designed with extensibility in mind, in particular regarding the future
additions of new data sources and processors. The third requirement is reusabil-
ity: the system should expose its operations through well-defined service APIs,
such that it can be integrated in different contexts.

Meeting these requirements is challenging because it requires designing a
loosely-coupled system that accumulates different kinds of data. Also, to the
best of our knowledge, there are no reasoning tools available for deriving and
explaining potentially-interesting scenarios (the leads) from online data streams.

This Work. We present μXL, a new lead generation tool that meets the afore-
mentioned requirements thanks to two key aspects.

First, μXL is implemented as a microservice architecture. Components are
clearly separated and can interact purely by formally-defined APIs. These APIs
are defined in the Jolie programming language [15], whose API language is
designed to be technology agnostic: Jolie APIs allow only for semi-structured
data with widely-available basic values (strings, integers, etc.) and can be imple-
mented with different technologies [14]. Most of our microservices are written
in Jolie, but we leverage this flexibility to use Java in our most performance-
critical component. In particular, we can use Jolie to lift a simple Java class to a
microservice without requiring any additional API definitions or Java libraries.

Second, μXL includes the first implementation of the recent theory of hypo-
thetical answers to continuous queries over data streams [4]. This allows our
system to present potential leads given the facts that are currently available,
and accompany them with rule-based explanations that clearly distinguishes
observed facts from hypotheses about the future.

The contributions of our paper can be summarised as follows:

1 https://www.mediacityodense.dk/en/.

https://www.mediacityodense.dk/en/

Explainable Lead Generation with Microservices and Hypothetical Answers 5

– A microservice architecture that (i) collects historical and current data rele-
vant for lead generation from various online data sources, and (ii) integrates
artificial intelligence (AI) to generate explainable leads.

– A technology-agnostic description of the APIs and patterns used in our sys-
tem, which are respectively expressed in Jolie [15] and the API patterns
recently exposed in [21]. This serves three purposes. For us, Jolie and API
patterns were useful guides. For the reader, it clarifies our design. And for
Jolie and the collection of API patterns, it is an additional validation of their
usefulness in practice. (For both Jolie and API patterns, it is the first valida-
tion in the journalistic domain that we know of.)

– The first implementation of a hypothetical answer reasoning engine – which
given rules and online datastreams can produce explainable leads – and its
integration in our architecture. Our engine is based on the theory originally
presented in [4], so our work also serves as the first validation of its usefulness.

– A performance evaluation of our lead generation component (the reasoner).

Structure of the Paper. Section 2 presents relevant related work and background
on the reasoning theory that we use. Section 3 describes our explainable AI
engine. Section 4 is dedicated to the system’s architecture. Section 5 provides
our experimental evaluation. Finally, Sect. 6 concludes with future work.

2 Related Work

AI and Journalism. The use of AI in journalism is seeing increased focus. One
of the perspectives relevant to this work is automated news generation. In this
realm, the authors in [17] designed ‘News robot’, a system that automatically
generates live events or news of the 2018 Winter Olympic Games. This system
generates six news types by joining general and individualised content with a
combination of text, image, and sound. In another work [10], an automatic news
generation solution with semantically meaningful content was proposed by inte-
grating audio, video, and text information in the context of broadcast news.
While in [12] the authors presented an automatic news generation system that
is largely language and domain independent.

Another perspective is trending topic detection, where programs try to dis-
tinguish trending topics in a wealth of news sources. In that context, the authors
in [1] compared six methods used for topic detection relevant to major events
on Twitter. Moreover, the work in [13] proposed a tool that detects trends in
online Twitter data and synthesises a topic description. The system also offers
user interactivity for selection by means of criteria-selection and topic descrip-
tion. While the authors in [2] designed a novel framework to collect messages
related to a specific organisation by monitoring microblog content, like users and
keywords, as well as their temporal sequence.

There is also a lot of research dedicated to predicting trends, mostly using
machine learning techniques. For instance, the authors of [5] tackled trending
topic prediction as a classification problem. They used online Twitter data to

6 L. Cruz-Filipe et al.

detect features that are distinguished as trending/non-trending hashtags, and
developed classifiers using these features. Furthermore, the work in [18] proposed
a solution that extracts keywords from an article and then predicts its popularity
based on these keywords. They compared their approach to other popular ones
based on the BERT model and text embeddings. A connected problem is that
of predicting future user interests, which the authors of [20] explored in the
context of microblogging services and unobserved topics. Specifically, they built
topic profiles for users based on discrete time intervals, and then transferred user
interests to the Wikipedia category structure.

The most relevant work to lead generation is the one proposed by the authors
in [6]. They designed, developed, and evaluated a news discovery tool, called
‘Lead Locator’, which supplements the reporting of national politics by sug-
gesting possibly noteworthy locations to write a story about. They analysed a
national voter file using data mining to rank counties with respect to their possi-
ble newsworthiness to reporters. Then, they automatically produced ‘tip sheets’
using natural language generation. Reporters have access to these ‘tip sheets’
through an interactive interface, which includes information on why they should
write an article based on that county. In a similar way, the authors in [19] devel-
oped ‘CityBeat’, a system that finds potential news events. It collects geo-tagged
information in real-time from social media, finds important stories, and makes
an editorial choice on whether these events are newsworthy.

Microservices and Jolie. Microservices are cohesive and independently-
executable software applications that interact by message passing. Their origins
and reasons for diffusion are surveyed in [7], along with open challenges and
future directions.

Jolie is a service-oriented programming language that provides native linguis-
tic constructs for the programming of microservices [15]. Its abstractions have
been validated both in terms of industrial productivity [9], development of secu-
rity strategies [16], and engineering: Jolie’s structures resemble the architectural
metamodels found in tools for Model-Driven Engineering of microservices based
on Domain-Driven Design [8]. We mention a few relevant aspects. First, Jolie
comes with an algebraic language for composing communication actions, which
facilitates the composition of services by other services. Second, in the definition
of services, Jolie’s syntax separates APIs, deployment, access points (how APIs
can be reached, e.g., with which protocol), and behaviours (service implemen-
tations). Some notable consequences for our work include: (i) Jolie APIs can
be implemented with different technologies (we use Jolie itself for some, and
Java when fine-tuning performance is important); and (ii) the different parts of
our architecture can be flexibly deployed together (communication supported by
shared memory), all separate (remote communication), or in a hybrid fashion
(some together, some not). We use the ’all separate’ option in our description,
but adopters are free to change this decision.

Hypothetical Query Answering. The explainable AI component of μXL imple-
ments the theory presented in [4], which allows for producing hypothetical

Explainable Lead Generation with Microservices and Hypothetical Answers 7

answers (answers that depend on the occurrence of future events). We dedicate
the rest of this section to the necessary background on this theory.

The theory in [4] is based on Temporal Datalog [3], which is a negation-
free variant of Datalog where predicates include temporal attributes. Temporal
Datalog has two types of terms: object and time. An object term is either an
object (constant) or an object variable. A time term is either a natural number,
called a time point (one time point for each natural number), a time variable, or
an expression on the form T + k where T is a time variable and k is an integer.

Predicates take exactly one temporal parameter, which is always the last one.
This gives all atomic formulas, hereafter called atoms, the form P (t1, . . . , tn, τ),
where P is a name of a predicate with n ∈ N object terms, t1 to tn are all
object terms, and τ is a time term. Intuitively the semantics of P (t1, . . . , tn, τ)
is defined such that predicate P holds for terms t1 to tn at time τ .

Programs are sets of rules of the form α ← α1 ∧ . . . ∧ αn with α, α1, . . . , αn

atoms. The head of the rule is α, and the body of the rule is α1 ∧ . . . ∧ αn. A
predicate that occurs in the head of at least one rule with non-empty body is an
intensional predicate, otherwise it is an extensional predicate.

A datastream is a set of dataslices, one for each natural number. Each
dataslice consists of a finite number of atoms with extensional predicates, each
with the dataslice’s index as their temporal parameter. A query is a list of atoms,
and an answer to a query is a substitution that makes the query valid.

Given a Temporal Datalog program and a datastream, we can compute hypo-
thetical answers for a given query. A hypothetical answer is a substitution σ
paired with a set of atoms H (the hypotheses) such that σ is an answer to the
query if the atoms in H appear later in the datastream. The algorithm from [4]
is a modification of SLD-resolution [11] from logic programming. It maintains a
list of hypothetical answers that are updated as new dataslices are produced.

To provide explainability of how hypothetical answers are deduced, they are
associated to a set of atoms called evidence. These atoms are the past atoms from
the datastream that have been used in deducing the answer. As new dataslices
arrive, new hypothetical answers are generated; atoms in hypotheses are moved
to evidence if they appear in the dataslice; and hypothetical answers whose
hypothesis include atoms with the current time that do not appear are discarded.

3 HARP: Hypothetical Answer Reasoning Program

The microservice implementing the AI of this architecture is called Hypothetical
Answer Reasoning Program (HARP). HARP contains an implementation of the
reasoning framework of [4] to perform lead deduction from a set of rules and a
datastream. This architecture allows for an arbitrary datastream and an almost
arbitrary specification of rules.2 The core functionalities of HARP are imple-
mented in Java; the resulting microservice and APIs are in Jolie, which wraps
the Java code by using Jolie’s embedding feature for foreign code [15].

2 Rules have to be stratified, i.e., they cannot have circular dependencies [4].

8 L. Cruz-Filipe et al.

3.1 Specification of Rules

We illustrate the specification of rules by using streams of data that originate
from Google Trends. The implementation requires that variables start with an
uppercase letter and constants start with a lowercase letter. Time points must
be natural numbers and expressions must be of the form T + k or T − k for a
time variable T and a natural number k. (In our examples, time points represent
hours and timestamps from Google Trends are rounded up to the next hour.)

Our rules cover three arguments for why a topic should be considered a lead.

1. If a topic becomes a daily trend in a region and its popularity rises over the
next two hours, then it is a popularity lead. The rule is written as:

DailyTrend(Topic, Region, T), Popularity(Topic, Region, Pop0, T),
Popularity(Topic, Region, Pop1, T+1),
Popularity(Topic, Region, Pop2, T+2),
Less(Pop0,Pop1), Less(Pop1,Pop2) -> PopularityLead(Topic, Region, T)

2. If a topic is a daily trend in a region, and then becomes a daily trend in
another region, then it is a global trend – but only if it continues to spread
to new regions every hour for the next two hours. If a global trend remains a
global trend for the next two hours, then it is a global lead. This argument is
written as two rules: one rule specifying what makes a topic a global trend,

DailyTrend(Topic, Region0, T), DailyTrend(Topic, Region1, T+1),
DailyTrend(Topic, Region2, T+2), DailyTrend(Topic, Region3, T+3),
AllDiff(Region0,Region1,Region2,Region3) -> GlobalTrend(Topic, T+1)

and one rule specifying how a global trend becomes a global lead.

GlobalTrend(Topic, T), GlobalTrend(Topic, T+1),
GlobalTrend(Topic, T+2) -> GlobalLead(Topic, T)

3. The third argument uses the notion of certain leads – some leads are more
certain than others. While our architecture does not capture probabilities, we
can specify that both popularity leads and global leads are certain leads.

PopularityLead(Topic, Region, T) -> CertainLead(Topic, Region, T)
GlobalLead(Topic, T) -> CertainLead(Topic, Region, T)

If two topics are certain leads and if both topics closely relates to a third
topic, then the third topic is a lead derived from other leads:3

CertainLead(Topic1, Region, T), CertainLead(Topic2, Region, T),
RelatedTopic(Topic1, Topic), RelatedTopic(Topic2, Topic)

-> DerivedLead(Topic, Region, T)

3 This rule captures the idea that if Peyton Manning and Tom Brady are both in the
news, then it might be interesting to write an article about NFL Quarterbacks.

Explainable Lead Generation with Microservices and Hypothetical Answers 9

We differentiate between certain leads and derived leads to avoid derived
leads being used to derive other derived leads. This would make a topic a
lead solely because related topics twice or more removed are trending.
The final rules denote that both certain leads and derived leads are leads.

CertainLead(Topic, Region, T) -> Lead(Topic, Region, T)
DerivedLead(Topic, Region, T) -> Lead(Topic, Region, T)

At each hour, the datastream contains information about topics that are daily
trends in a region, DailyTrend(Topic, Region, T), popularity of topics that are
daily trends, Popularity(Topic, Region, Pop, T), and which topics are related,
RelatedTopic(Topic1, Topic2, T).

3.2 User-Defined Predicates (UDPs)

Predicates such as Less and AllDiff are not practical to specify as rules, but
rather algorithmically. Our implementation allows for specifying such User-
Defined Predicates (UDP). An atom whose predicate is a UDP is called a User-
Defined Atom (UDA). UDAs in hypotheses are evaluated by running the function
defining the corresponding UDP as soon as all variables have been instantiated,
after which they are processed similar to other hypotheses. Therefore, all uses of
UDAs in rules must be safe: any variable that appears in a UDA in a rule must
also appear in a non-UDA in the same rule.

UDPs are specified by implementing the Java Interface
UserDefinedPredicate, whose local path is given in the internal initialisation
of HARP. Therefore, adding different UDPs requires updating a configuration
file within HARP. The interface UserDefinedPredicate includes four methods:

– id() returns the textual representation of the UDP;
– toString(List<Term> terms) returns the textual representation of a UDA

with this UDP and arguments terms;
– nArgs() returns the number of arguments of the UDP;
– run(List<Constant> constantList returns true if the UDP holds for the

list of objects (constants) arguments given, false otherwise.

The list arguments of both toString and run must be of length nArgs().

3.3 HARP as a Microservice

HARP allows our implementation of [4] to interface with the rest of the architec-
ture. It maintains an instance of the reasoning framework that can be used after
rules and queries are specified. (The original framework [4] only considers a single
query, but HARP allows for multiple queries to be evaluated simultaneously.)

When HARP is initialised with a set of rules and queries, it performs a pre-
processing step to compute the initial hypothetical answers. Later, it periodically
fetches dataslices, rounds the time point up to the nearest hour, and passes them

10 L. Cruz-Filipe et al.

to the reasoner to update the hypothetical answers. The time required for this
step depends on the current number of hypothetical answers and the size of the
dataslice. Since dataslices are produced every hour, this computation time must
be shorter than this limit. This issue is discussed in more detail in Sect. 5.

Fig. 1. Architecture overview.

4 Architecture

The overall architecture as shown in Fig. 1 consists of four basic components:
Frontend, Data Sources, Data Manager, and Reasoner.

There are two operations that can be executed through the Frontend. The
first is the initialisation of the processing pipeline. The user (an administrator)
provides the input parameters of the Data Manager microservice and the HARP
microservice. The Data Manager takes as input the necessary information for
retrieve data from the specified public APIs, e.g., Google Trends. This informa-
tion will be used to make requests to these APIs. This process takes place recur-
rently every t seconds, where t is a user-defined parameter. The data received by
the Data Manager are stored in a database and the most recent views of data are
aggregated, representing the current state of the system. At the same time, the
HARP microservice is also initialised with the appropriate parameters provided
by the user through the Frontend. In particular, the HARP microservice sends
a request to the Aggregate Latest Data and receives as response the aggregated
most recent views of data. This process takes place recurrently as well. HARP
processes these data and returns the current answers.

The second operation retrieves the most recent answers. The user makes a
request that reaches the HARP microservice and retrieves as a response the
current answers, which are displayed to the Frontend.

Explainable Lead Generation with Microservices and Hypothetical Answers 11

4.1 Application of Patterns for API Design

The proposed architecture can be analysed wrt the following categories of pat-
terns for API design, as described in [21]:

– The Foundation Patterns, which deal with issues like API Accessibility
(from where APIs should be accessed) and API Integration (e.g., whether a
client interacts directly with the API or through other means).

– The Responsibility Patterns, which clarify the Endpoint Roles (the archi-
tectural roles of API endpoints) and the responsibilities of their operations.

– The Quality Patterns, which deal with the compromises between providing
a high-quality service and cost-effectiveness. The Quality Patterns category
comprises the following patterns: Data Transfer Parsimony, Reference Man-
agement, and Quality Management and Governance.

Data Manager. The Data Manager microservice employs the Backend Integra-
tion pattern for API Integration: it integrates with two other backends of the
same application, the Backend for Frontend and HARP, and multiple other pub-
lic APIs, by exposing its services via a message-based remote Backend Integra-
tion API. In more detail, the Data Manager integrates with:

– The Backend for Frontend, which makes initDM() requests of this type to
the Data Manager:

1 type InitDMRequest { hl: string, /* Host language */
2 tz: int, /* Timezone offset in minutes */
3 ns: int, geo: string, /* Geolocation */, t: long }

A JSON payload example is as follows:

1 { "hl": "en-us", "tz": 300, "ns": 15, "geo": "DK", "t": "100" }

The corresponding response is of the following format:

1 type InitDMResponse { ack: boolean /* Acknowledgement */ }

– Public APIs, like Google Trends, with messages of the following format:

1 type DailytrendsRequest { hl: string, /* Host language */
2 tz: int, /* Timezone offset in minutes */
3 ns: int, geo: string /* Geolocation */ }

An example of JSON payload is the following:

1 { "hl": "en-us", "tz": 300, "ns": 15, "geo": "DK" }

The corresponding response is a message of the following format:

1 type DailytrendsResponse { entry*: DailytrendsElement }
2 type DailytrendsElement { query:, string /* Trending topic */
3 traffic: string /* Approximate traffic in string format */
4 urllist*: string /* URLs of articles about trending topic */ }

12 L. Cruz-Filipe et al.

An example of JSON payload is the following:

1 {[{"query":"Detroit Lions", "traffic": "10K",
2 "urllist": ["https://en.as.com/resultados/superbowl/detroit_lions",

"https://www.football-espana.net/superbowl/detroit_lions"]},
3 {"query": "Thanksgiving parade", "traffic": "50K",
4 "urllist":
5 ["https://www.cbsnews.com/news/thanksgiving_parade_2022/"] }]}

– HARP, which sends requests to and receives responses from the Data Manager
with the following formats:

1 type HARPRequest { datasource*: string }
2 type HARPResponse { t: long, facts*: string }

A JSON request example is the following:

1 { "t": 1669306702000, "facts": ["Popularity(detroit lions,10K,
1669306702000)", "Popularity(thanksgiving parade,50K,
1669306702000)", "Popularity(uruguay,5K,1669306702000)"] }

As far as it concerns API Accessibility, for the Data Manager we follow the
Solution-Internal API pattern: its APIs are offered only to system-internal com-
munication partners, such as other services in the application backend.

The Data Manager utilises two Endpoint Roles, a Processing Resource and an
Information Holder Resource. The former has to do with the initDM() request of
the Backend for Frontend, which triggers the Data Manager to start requesting
user-specified data from the public APIs. This is a State Transition Operation,
where a client initiates a processing action that causes the provider-side appli-
cation state to change. The Information Holder Resource endpoint role concerns
the responses of the public APIs, which are data that need to be stored in some
persistence and the requests from the HARP, which need to get the aggregated
most recent views of data. This is both a Master Data Holder, because it accu-
mulates historical data, and an Operational Data Holder, because it supports
clients that want to read the most recent views of data.

Finally, regarding the Quality Patterns, the Data Manager follows Rate
Limit, which is dictated both by the user’s Data Manager initDM() request
and the possible rate limits that public APIs might have.

Backend for Frontend. Regarding API Integration, the Backend for Frontend
microservice employs the Frontend Integration pattern and more specifically the
Backend for Frontend pattern, since it integrates the frontend with the backend
of our application, by exposing its services via a message-based remote Frontend
Integration API. In more detail, the Backend for Frontend integrates with (i)
the Data Manager, using operation initDM() as previously described; and (ii)
HARP, using the initXAI() and update() operations. We discuss those in the
description of the HARP component, coming next.

Explainable Lead Generation with Microservices and Hypothetical Answers 13

For API Accessibility, the Backend for Frontend follows the Community API
pattern, since in the future it is intended to support different kinds of frontends
and the integration of our system with other tools used by journalists.

The Backend for Frontend utilises two endpoints with one Endpoint Role.
Both endpoints are Processing Resources, which has to do with the initDM()
and initXAI() request to the Data Manager and HARP, respectively, and the
update() request to the HARP. The first two are State Transition Operations,
where a client initiates a processing action that causes the provider-side applica-
tion state to change, while the latter is a Retrieval Operation, where information
available from HARP gets retrieved for an end user.

Finally, regarding the Quality Patterns, the Backend for Frontend follows
Rate Limit which is dictated by the user’s initDM() and initXAI() requests.

HARP. HARP employs the Backend Integration pattern: it exposes its message-
based API to two other backend services of the same application, the Backend
for Frontend and the Data Manager. In more detail, HARP integrates with the:

– Backend for Frontend, which makes initXAI() requests of the type:

1 type InitXAIRequest { name: string, /* Instance name */
2 t: long, /* Interval period for each call (in ms) */
3 target: string, /* Location of the data source */
4 datasources*: string /* Data sources to retrieve data */
5 rules*: string /* Rules to be initialised at HARP instance */
6 queries*: string /* Queries to be initilizated at HARP instance }

An example of JSON payload is shown below:

1 { "name": "HARP-example", "t": 3600000,
2 "target": "getDailyTrends",
3 "datasources": ["GoogleTrends_dailytrends"],
4 "rules": ["GlobalLead(Topic, T) -> CertainLead(Topic, Region, T)",
5 "CertainLead(Topic, Region, T) -> Lead(Topic, Region, T)"]
6 "queries":["Lead(Topic, dk, T)","GlobalLead(Topic,T)"] }

The corresponding response is of the following format:

1 type InitXAIResponse { ack: boolean /* Acknowledgement */}

The Backend for Frontend can also make update() requests to HARP:

1 type UpdateRequest { query: string }

An example of JSON payload is the following:

1 {"query": "Lead(Topic, Region, T)"}

Furthermore, HARP gives the following response:

1 type UpdateResponse { answers*: answerElement,
2 hypotheticalAnswers*: HypotheticalAnswerElement }

14 L. Cruz-Filipe et al.

3 type ActualAnswerElement { answer: string, evidence*: string }
4 type HypotheticalAnswerElement {
5 answer: string, hypothesis*: string, evidence*: string }

An example of JSON payload is as follows:

1 {"answers": [
2 {"answer": "Lead(detroit lions,dk,1669299502000)",
3 "evidence": [
4 "DailyTrend(detroit lions,dk,1669299502000)",
5 "Popularity(detroit lions,dk,8K,1669299502000)",
6 "Popularity(detroit lions,dk,9k,1669303102000)",
7 "Popularity(detroit lions,dk,10K,1669306702000),"
8 "8K<9k","9k<10k"]},
9 {"answer": "Lead(thanksgiving parade,dk,1669299502000)",

10 "evidence": [
11 "DailyTrend(thanksgiving parade,dk,1669299502000)"
12 "Popularity(thanksgiving parade,35K,1669299502000)",
13 "Popularity(thanksgiving parade,47K,1669303102000)",
14 "Popularity(thanksgiving parade,50K,1669306702000)"
15 "35K<47K","47K<50K"]}],
16 "hypotheticalAnswers": [
17 {"answer": "Lead(detroit lions,dk,1669303102000)",
18 "hypothesis": ["10k<Pop2",
19 "Popularity(detroit lions,dk,Pop2,1669311402000)"],
20 "evidence": [
21 "Popularity(detroit lions,dk,9K,1669303102000)",
22 "Popularity(detroit lions,dk,10K,1669306702000)",
23 "9k<10k"]},
24 {"answer": "Lead(thanksgiving parade,dk,1669303102000)",
25 "hypothesis": ["50k<Pop2"
26 "Popularity(thanksgiving parade,dk,Pop2,1669311402000)"],
27 "evidence": ["47k<50k",
28 "DailyTrend(thanksgiving parade,dk,1669303102000)",
29 "Popularity(thanksgiving parade,dk,47K,1669303102000)",
30 "Popularity(thanksgiving parade,dk,50K,1669306702000)"]}] }

– Data Manager, which HARP makes listen() requests to of the form:

1 type ListenRequest { datasources*: string /* Data sources */}

and receives a response like the following:

1 type ListenResponse { t: long, facts*: string /* Facts for time t */}

A JSON payload example is given below:

1 { "t": 1669306702000, "facts": [
2 "Popularity(detroit lions,10K,1669306702000)",
3 "Popularity(thanksgiving parade,50K,1669306702000)",
4 "Popularity(uruguay,5K,1669306702000)"] }

Explainable Lead Generation with Microservices and Hypothetical Answers 15

Fig. 2. Left: preprocessing time for a single rule with a body of 0 to 100 000 atoms, at
intervals of 1 000, averaged over 10 runs. Right: updating time for a datastream with
atoms of the form DailyTrend(Topic, dk, t) and Popularity(Topic, dk, t, t) for
0 to 100 000 different values of Topic, at intervals of 1 000, averaged over 10 runs.

For API Accessibility, HARP follows the Solution-Internal API pattern.
HARP uses two Endpoint Roles, a Processing Resource and an Information

Holder Resource. The former concerns the response of the Data Manager, which
triggers HARP to produce the current answers. This is actually a State Transition
Operation, where the Data Manager’s response initiates a processing action that
causes the provider-side application state to change. The same applies also for
the initXAI() request. The Information Holder Resource endpoint role concerns
the update() requests from the Backend for Frontend, which asks for the most
recent answers. In more detail, this is an Operational Data Holder in the sense
that it supports clients that want to read the most recent calculated answers.

Finally, HARP follows the Rate Limit Quality Pattern, dictated both by the
initial initXAI() request and the rate limits that public APIs might have.

5 Experimental Evaluation

The bottleneck of our system consists of the preprocessing and update steps in
the reasoner. In this section we empirically explore the cost of these computa-
tions. Experiments were performed on a machine with an Intel i5-10400 CPU,
64GB RAM, and Windows 11. Our results are shown in Fig. 2.

The preprocessing time depends on the rules. (Determining the precise form
that rules must have for the worst-case preprocessing time is a task beyond the
scope of this paper.) In the simple case of a single rule, the preprocessing time
increases linearly as the size of the rule’s body varies from 0 to 100 000 atoms
(Fig. 2, left side). The general case is known to be exponential [11].

16 L. Cruz-Filipe et al.

The time for updating the set of hypothetical answers depends on two factors:
the amount of data in the given dataslice and the current number of hypothetical
answers. The latter depends on the relevance of the previous data. If data from
the datastream matches with atoms in the hypothesis of a hypothetical answer,
then more hypothetical answers might be created. The worst-case scenario is
that every data matches with atoms in all hypotheses. The execution time of
this update has been evaluated for this case, with data size ranging from 0 to
100 000 atoms, with execution time peaking at around 6 seconds (Fig. 2, right
side). Increasing the data size to 1 000 000 or larger exceeds the available memory
limits of our testing setup, due to the program’s current need to have the entire
dataslice in memory before updating the hypothetical answers.

Overall, this preliminary evaluation of the performance of our reasoner is
satisfactory: service startup is affected only minimally (under a second), and
updates can be performed reasonably often. (Note that the Frontend does not
need to wait for updates when it asks for the current state, since the latter is
cached until a new state is produced by finishing an update.) Nevertheless, we
discuss potential improvements in the next section.

6 Conclusions and Future Work

We have developed μXL, the first extensible system for lead generation that
integrates the integration benefits of microservices with explainable AI. Our
development is motivated by concrete needs identified in a collaboration with
Danish media companies. These needs oriented us towards the adoption of recent
theories and tools, in particular API Patterns [21], the Jolie programming lan-
guage [15], and hypothetical reasoning over data streams [4]. Thus, our work
also serves as a practical validation of these methods.

In this work we have focused on the architectural and technical aspects of
μXL. In the future we would like to evaluate the usefulness of μXL for journalists
by: carrying out systematic comparisons against other tools based on different
architectures and AI; and conducting controlled user experiments. Other future
directions include extending the system to more data sources and integrating
more kinds of AI in addition to HARP. Regarding our reasoner, extending HARP
such that it could process dataslices in chunks could be interesting for process-
ing large amounts of data with small amounts of RAM. Another interesting
improvement is parallelising HARP’s update operation, such that it can scale to
dataslices with sizes of billions or more. A more conceptual extension is to incor-
porate the possibility of having delays in the data, as described in [4]. Finally, we
plan on exploring procedures that suggest interesting rules, for example based
on statistical observations of journalistic behaviour.

Acknowledgements. We thank Narongrit Unwerawattana for his technical support.

Explainable Lead Generation with Microservices and Hypothetical Answers 17

References

1. Aiello, L.M., et al.: Sensing trending topics in Twitter. IEEE Trans. Multim. 15(6),
1268–1282 (2013)

2. Chen, Y., Amiri, H., Li, Z., Chua, T.: Emerging topic detection for organizations
from microblogs. In: Proceedings of SIGIR, pp. 43–52. ACM (2013)

3. Chomicki, J., Imielinski, T.: Temporal deductive databases and infinite objects.
In: Proceedings of SIGMOD, pp. 61–73. ACM (1988)

4. Cruz-Filipe, L., Nunes, I., Gaspar, G.: Hypothetical answers to continuous queries
over data streams. In: Proceedings of AAAI, pp. 2798–2805 (2020)

5. Das, A., Roy, M., Dutta, S., Ghosh, S., Das, A.K.: Predicting trends in the twitter
social network: a machine learning approach. In: Panigrahi, B.K., Suganthan, P.N.,
Das, S. (eds.) SEMCCO 2014. LNCS, vol. 8947, pp. 570–581. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-20294-5_49

6. Diakopoulos, N., Dong, M., Bronner, L.: Generating location-based news leads
for national politics reporting. In: Proceedings of Computational + Journalism
Symposium (2020)

7. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4_12

8. Giallorenzo, S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S.: Jolie and
LEMMA: model-driven engineering and programming languages meet on microser-
vices. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol.
12717, pp. 276–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
78142-2_17

9. Guidi, C., Maschio, B.: A jolie based platform for speeding-up the digitalization of
system integration processes. In: Proceedings of Microservices (2019)

10. Huang, Q., Liu, Z., Rosenberg, A.E., Gibbon, D.C., Shahraray, B.: Automated gen-
eration of news content hierarchy by integrating audio, video, and text information.
In: Proceedings of ICASSP, pp. 3025–3028. IEEE Computer Society (1999)

11. Kowalski, R.A.: Predicate logic as programming language. In: Proceedings of IFIP,
pp. 569–574. North-Holland (1974)

12. Leppänen, L., Munezero, M., Granroth-Wilding, M., Toivonen, H.: Data-driven
news generation for automated journalism. In: Proceedings of INLG, pp. 188–197.
Association for Computational Linguistics (2017)

13. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the Twitter
stream. In: Proceedings of SIGMOD, pp. 1155–1158. ACM (2010)

14. Montesi, F.: Process-aware web programming with jolie. Sci. Comput. Program.
130, 69–96 (2016)

15. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie.
In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp.
81–107. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7_4

16. Montesi, F., Weber, J.: From the decorator pattern to circuit breakers in microser-
vices. In: Proceedings of ACM SAC, pp. 1733–1735. ACM (2018)

17. Oh, C., et al.: Understanding user perception of automated news generation system.
In: Proceedings of CHI, pp. 1–13. ACM (2020)

18. Pugachev, A., Voronov, A., Makarov, I.: Prediction of news popularity via keywords
extraction and trends tracking. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020.
CCIS, vol. 1357, pp. 37–51. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-71214-3_4

https://doi.org/10.1007/978-3-319-20294-5_49
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-3-030-78142-2_17
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-3-030-71214-3_4
https://doi.org/10.1007/978-3-030-71214-3_4

18 L. Cruz-Filipe et al.

19. Schwartz, R., Naaman, M., Teodoro, R.: Editorial algorithms: using social media
to discover and report local news. In: Proceedings of ICWSM, pp. 407–415 (2015)

20. Zarrinkalam, F., Fani, H., Bagheri, E., Kahani, M.: Predicting users’ future inter-
ests on twitter. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp.
464–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5_36

21. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for
API Design: Simplifying Integration with Loosely Coupled Message Exchanges.
Addison-Wesley Signature Series (Vernon). Addison-Wesley Professional (2022)

https://doi.org/10.1007/978-3-319-56608-5_36

One Microservice per Developer: Is This
the Trend in OSS?

Dario Amoroso d’Aragona1(B), Xiaozhou Li2(B), Tomas Cerny3,
Andrea Janes4, Valentina Lenarduzzi2, and Davide Taibi1,2

1 Tampere University, Tampere, Finland
dario.amorosodaragona@tuni.fi, davide.taibi@oulu.fi

2 University of Oulu, Oulu, Finland
xiaozhou.li@oulu.fi, valentina.lenarduzzi@oulu.fi

3 University of Arizona, Tucson, USA
tcerny@arizona.edu

4 Vorarlberg University of Applied Sciences, Dornbirn, Austria
andrea.janes@fhv.at

Abstract. When developing and managing microservice systems, prac-
titioners suggest that each microservice should be owned by a particular
team. In effect, there is only one team with the responsibility to man-
age a given service. Consequently, one developer should belong to only
one team. This practice of “one-microservice-per-developer” is especially
prevalent in large projects with an extensive development team.

Based on the bazaar-style software development model of Open Source
Projects, in which different programmers, like vendors at a bazaar,
offer to help out developing different parts of the system, this article
investigates whether we can observe the “one-microservice-per-developer”
behavior, a strategy we assume anticipated within microservice based
Open Source Projects.

We conducted an empirical study among 38 microservice-based OS
projects. Our findings indicate that the strategy is rarely respected by
open-source developers except for projects that have dedicated DevOps
teams.

1 Introduction

Microservices are increasing their diffusion both in industry and in Open Source
Software (OSS) projects [4].

Microservices are small and autonomous services deployed independently,
with a single and clearly defined purpose [11,24]. Because of their indepen-
dent deployment, each microservice can scale independently from others. Some
authors see microservices not primarily as a technological benefit but also as a
way to scale up the number of development teams: “microservices are not neces-
sarily required to manage huge software, but rather to manage a huge number of
people working on them [29]”. The rationale is that since microservices decou-
ple software components, less communication is necessary to develop them, and
larger teams become possible.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 19–34, 2023.
https://doi.org/10.1007/978-3-031-46235-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_2

20 D. Amoroso d’Aragona et al.

Practitioners suggest that a microservice should be owned and managed
by a single team [1,3,4,27,29,30,36]. The supportive argument sources from
“Conway’s law” [9] states that “organizations which design systems (in the broad
sense) are constrained to produce designs which are copies of the communication
structures of these organizations.” Following this law, it would be ineffective or
detrimental to have two separate teams working on one microservice. Working on
one microservice requires communication within the team, and if these communi-
cation structures are not present, the work on a joint microservice becomes hard.
Therefore, it is suggested that each team is responsible for one or more business
functions [1,30]. While some authors (and Conway himself [9]) clearly foresee
that each team can own more than one microservice/subsystem [8,30,36], oth-
ers suggest that “a team should have exactly one service unless there is a proven
need to have multiple services”, to not exceed the cognitive capacity of a team
[30]. Particularly if business functions are large (e.g., “customer management”
or “order management”), practitioners suggest that one team is fully dedicated
to one microservice [27].

Therefore, following the practitioners’ recommendations [8,9,27,30,36], a
developer must belong only to one team, and each team must contribute only
to one microservice. Consequently, we can deduct that each team member, and
therefore each developer, must contribute to only one microservice. Based on
these assumptions, it would be interesting to investigate the ”one-microservice-
per-developer” strategy to verify to which extent it is considered in practice.

The goal of this paper is to investigate to which degree it is correct to assume
that in microservice OSS projects, the one-microservice-per-developer strategy
is respected.

Particularly, teams developing OSS projects using a bazaar-style software
development model (as described in Eric Raymond’s seminal essay “The Cathe-
dral and the Bazaar”, in which different programmers, like vendors at a bazaar,
offer to help out developing different parts of the system [28]), require a decoupled
software architecture, which—what we assume—would manifest in a decoupled
collaboration structure. Within OSS projects adopting a microservice architec-
ture, we hypothesize, we observe that developers, during a given time window,
commit only to one microservice at a time.

For these aims, we designed and conducted an empirical study among 38
microservice-based OSS projects selected from the dataset created by Baresi et
al. [4]. Using code repositories of these projects and analyzing the history of
commits, we calculated the average number of microservices developed by each
developer determining how well is the one-microservice-per-developer strategy
employed. In addition, we further investigated the potential developer profiles
using Exploratory Factor Analysis (EFA) to detect the patterns of developer
behaviors in the core contributor groups of these projects.

Paper Structure: Section 3 describes the empirical study design, while Sect. 4
reports the obtained results. Section 5 discusses the results, and Sect. 6 highlights
the limitation of this work. Section 2 presents the related work, and Sect. 7 con-
cludes.

One Microservice per Developer: Is This the Trend in OSS? 21

2 Related Work

Developer interaction analysis has been approached from different perspectives
in OSS communities. Given the large quantities of produced communication
artifacts throughout the developer interaction in the development process, var-
ious automated approaches have been proposed. Common sources of input for
such analysis include version control systems (performing mining source code
repositories) [15,16], mailing lists, and issue trackers [5,26], or developer online
surveys [22]. Prior to the era of microservices, Bird et al. [5] considered social net-
work communities and system modularity. They researched code artifact changes
across modules and analyzed email archives to derive social networks and assess
community alignment with modularity. The conclusions and research questions
of Bird et al. [5] in the scope of microservices drive new perspectives. Microser-
vices are self-contained, and with regard to Conway’s law, we can consider well-
defined teams assigned to particular microservice development. In addition, the
remaining challenge related to crosscutting concerns cannot be simply negated
in microservices.

With regards to microservices and well-defined separation boundaries by code
repositories (or at least repository modules). It can thus be assumed that code
artifacts modified by developers within the same community are placed in a
related repository location.

Throughout OSS software development, it can be expected that developer
assignments to subsystems remain stable (i.e., given expertise alignments, sub-
system assignment, etc.). Ashraf and Panichella [2] analyzed a set of OSS
projects to examine developer communities from the perspective of their subsys-
tem assignment and interaction highlighting that emerging communities change
considerably across a project’s lifetime and do align with each other.

The microservices perspective, as suggested by Lenarduzzi et al. [21], enables
teams to work independently, reducing cross-team communication. At the same
time, upon microservice integration, issues are reported across teams, as sug-
gested by Bogner et al. [7] who report on ripple effects. There are other under-
lying issues behind this relevant to system evolution, such as missing system-
centered perspective and lack of tools to analyze coherence across microservices,
perform modification trade-off analysis, or evaluate the conformance of the as-
built and as-documented architectures.

Besides interaction analysis to understand communities, other interesting
research directions took place. For instance, Marco et al. [25] analyzed GitHub
commit comments regarding emotions and feelings expression showing that
“one-commit” developers are more active and polite when posting comments as
opposed to “multi-commit” developers, that are less active in posting comments,
and when commenting, they are less polite.

In a timely thesis, Shi [31] looked into establishing contributor roles within
software repositories by mining architectural information. In a case study on
Apache Tomcat, they used the metric to deduce these roles and validate them
with particular roles listed on the project website. Such a research direction
aligns with the perspective of microservices with established separation of duty.

22 D. Amoroso d’Aragona et al.

Furthermore, the classification of experts responsible for re-engineering or man-
agement can lead to better insights into the applicability of Conway’s law across
microservice developers.

It is also important to take into account that enterprise companies like Red
Hat manage OSS projects [33] rather than projects based on volunteer con-
tribution. This can influence role identification, contributor duty spread across
modules, and also the community network. Spinellis et al. [33] considered the
detection of OSS projects that are supported by enterprises. Such projects can
serve as better benchmarks for practical case studies.

With respect to inter-project dependency identification, Blincoe et al. [6] con-
sidered reference coupling. The reference coupling method often identifies tech-
nical dependencies between projects that are untracked by developers. Under-
standing inter-project dependency is important for change impact analysis and
coordination. In their study, they manually analyzed identified dependencies
and categorized and compared them to dependencies specified by the develop-
ment team. They also assessed how the ecosystem structure compares with the
social behavior of project contributors and owners. As a result, of socio-technical
alignment analysis within the GitHub ecosystems, they found that the project
owners’ social behavior aligns well with the technical dependencies within the
ecosystem. Still, the project contributors’ social behavior does not align with
these dependencies. In microservices, this could possibly translate into system
architects aware of consequences and microservice developers who operate in iso-
lation as suggested by Lenarduzzi et al. [21] and unaware of such as inter-project
dependency.

In a similar perspective, Scaliante Wiese et al. [34] researched co-change
prediction. They use issues, developers’ communication, and commit metadata
to analyze change patterns for prediction models. They demonstrate that such
models based on contextual information from software changes are accurate and
can support software maintenance and evolution, warning developers when they
miss relevant artifacts while performing a software change.

3 The Empirical Study

In this section, we describe our empirical study reporting the goal and research
questions, context, data collection, and data analysis following the guideline
defined by Wohlin et al. [35].

Our goal is to evaluate to what extent the one-microservice-per-developer
strategy, recommended by practitioners [1,3,4,27,30] is respected in OSS
projects. To allow verifiability and replicability, we published the raw data in
the replication package1.

Then, we formulated two Research Questions (RQs).

RQ1. How well is the one-microservice-per-developer strategy respected in OSS
projects following a microservice architecture?

1 https://figshare.com/s/6ba4e0063ab04d03d6d6.

https://figshare.com/s/6ba4e0063ab04d03d6d6

One Microservice per Developer: Is This the Trend in OSS? 23

RQ2. Which developer roles better respect the one-microservice-per-developer
strategy?

With RQ1, we investigated if developers are actually responsible, and there-
fore committing, only to a single microservice. In RQ2, we aimed to understand
if specific roles are respecting the aforementioned strategy differently. We expect
that some roles (e.g. DevOps) can be involved in multiple microservices, while
other roles (e.g. coders) are involved only in a single microservice.

3.1 The Selected Projects

We considered the manually validated dataset including 145 microservice-based
projects, proposed by Baresi et al. [4]. The authors developed, validated, and
released a tool to recognize the architecture (e.g., the microservices, the exter-
nal services, and the databases used) in a given microservices-based project. In
addition, the authors provided a list of 145 projects that have been manually
validated as non-toy projects regularly using microservices, for which they also
reported the list of built-in microservices in the form of relative paths and some
other set-up information not used in our case. In particular, for our analysis, we
leveraged the list of projects and the related list of microservices identified by
a list of sub-project folders. The dataset consists of projects whose source code
is accessible on GitHub2 and is complemented with further data, including the
microservice list.

In order to select a set of relevant projects for our study, we defined the
following inclusion criteria:

– Project with at least 2 microservices. With this threshold, we aim to exclude
non-microservices projects.

– Projects with at least 2 microservices committed in the last 12 months. To
analyze projects that are still maintained.

By requiring a minimum number of microservices and activities in the last
non-representative outliers for our study can be excluded. It is important to note
that we did not exclude projects based on their programming languages.

As a result, we included 38 microservice-based projects with a total of 379
microservices (10 microservices per project on average).

3.2 Data Collection

To collect statistics about the development process, we browsed every project
commit. We gathered the timestamp, the author’s name, and the precise change
locations for each commit. With the latter, a modification is connected to a
microservice. We specifically created a heuristic that matches if the path of the
modified file is contained in the project’s list of microservices. If so, we updated
the list of microservice changes in the aforementioned author’s commit.

2 https://github.com.

https://github.com

24 D. Amoroso d’Aragona et al.

3.3 Data Analysis

To answer RQ1, the goal is to investigate the microservice coverage by the
developers on average by examining their commits on the microservices. Here,
we considered only the commits involving source code files and excluded all the
commits regarding documentation and setup files. We analyzed the distribu-
tion of commits over developers and microservices to understand 1) how many
microservices have developers in common, and 2) how many developers work on
more than one single microservice.

However, the threat, in this case, is the situation where a developer finishes
work on a microservice and gets started to work on another microservice, or for
some reason, he/she is just moved to another team of developers. From our point
of view, this situation does not lead to a real violation of the one-microservice-
per-developer strategy. For this reason, we have defined a metric for counting
how many times a developer recommits to a microservice after starting work on
another microservice; in other words, if a developer D1 commits to microservice
m1, switches the team, and starts committing to a m2 microservice, then the
result of our metric will be 0 because the developer never goes back to the
previous microservice; otherwise, if after a while the developer commits back
to m1, our metric results will give 1, because the developer goes back to the
previous microservice (m1).

To answer RQ2, we need to understand how to identify the role of each con-
tributor in OSS microservice projects. Different from industrial projects, within
OSS projects on GitHub, contributors, are neither assigned roles by “project
managers” or “product owners” nor obliged to focus on the tasks assigned to
them in the corresponding areas. Therefore, we shall only be able to understand
the roles based on the domains each contributor has been contributing to.

To identify the roles of the project contributors, we adopted the approach
proposed by Montandon et al. [23] combined with the Exploratory Factor Anal-
ysis (EFA).

Montandon et al. [23] proposed a machine-learning-based approach based on
the extensions of the committed files. They used more than 100k developers’
data from GitHub together with Stack Overflow data and studied five critical
roles: Backend, Frontend, Data scientist, DevOps, and Mobile. Herein, we initially
adopt the same settings.

The Exploratory Factor Analysis (EFA) [13] aims to discover not only the
number of factors but also what measurable variables together influence which
individual factors [10]. With EFA, we can reduce the complexity of the data,
and also are able to explain the observations with a smaller set of latent factors.
Importantly, by doing so we can also discover the relations among the variables.

Herein, we follow these steps to conduct EFA on our commit dataset and
determine the profile of each developer:

1. Preprocessing. Firstly, we group the obtained developer behavior data.
2. Data Verification. Secondly, we verify its sampling adequacy and statistical

significance. For example, we can use Bartlett’s Test of Sphericity [32] and
Kaiser-Meyer-Olkin (KMO) Test [18] for such a purpose.

One Microservice per Developer: Is This the Trend in OSS? 25

3. Determining Factor Number. Thirdly, we find the number of factors using
parallel analysis (PA) [14]. Herein, we employ the Monte Carlo simulation
technique to simulate random samples consisting of uncorrelated variables.
Then, We extract the eigenvalues of the correlation matrix of the simulated
data and compare the extracted eigenvalues that are ordered by magnitude
to the average simulated eigenvalues. Significant factors are the ones with
ob.served eigenvalues higher than the corresponding simulated eigenvalues

4. Factor Extraction and Interpretation. With the number of factors deter-
mined, we conduct the EFA on the dataset. To simplify the interpretation of
the factor analysis result, we employ the varimax rotation technique [17] to
maximize the variance of each factor loading.

5. Determining Individual Developer Role Allocation. To apply the
factor-variable relation to individual contributors, we shall calculate the sim-
ilarity between the developers’ contributions in terms of the languages and
each detected factor. By comparing the contributor’s similarity to each role
factor, we shall understand more intuitively which role(s) he/she leans to.
Such results can be visualized in a radar chart.

For this study, as a result of the EFA, we shall have a set of factors, each of
which is closely related to a set of latent variables, i.e., programming languages.
To be noted, due to the fact that the original data are collected from projects
of different programming languages, it is likely that contributors working on
different languages lean toward similar roles. For example, contributors working
on CSS and VUE can both be Frontend contributors. Therefore, we shall observe
the loadings of the EFA and manually merge factors related to only closely-
connected languages into the unified roles.

Particularly, the contributor’s similarity to each role-factor can be calculated
using the Kumar-Hassebrook (KH) similarity, which incorporates also the inner
product of the assigned values of the variables [20]. Moreover, using the KH
similarity, we can evaluate each contributor’s effort level in each pre-detected
role-factor, respectively.

4 Results

In this Section, we report the obtained results to answer our Research Questions
(RQs).

RQ1 How well is the one-microservice-per-developer strategy
respected in OSS projects following a microservice architecture?

To answer RQ1, we investigated the single developer, assuming that a single
developer does not belong to more than one team at the same time. Figure 1
compares the number of microservices with shared developers (MSs with Shared
Dev) with the number of microservices where all developers committed only to
the same microservice (MSs without Shared Dev).

26 D. Amoroso d’Aragona et al.

Unexpectedly, only 2 projects always respected the one-microservice-per-
developer strategy, while the remaining projects shared among services.

Since the vast majority of the projects (Fig. 3) a developer works on more
than one microservice, we continue our analysis to understand if developers are
simply switching teams, or are working on more microservices at the same time.

Figure 2 shows the result of the number of times developers commit back on a
microservice after moving to another one among the projects. In two projects out
of 38, developers never commit back to the previous microservice. In most of the
projects (53%), the median is 0, in 34% of the projects the median is between
1 and 10, and finally in the 13% of the projects is more than 10. However,
analyzing the figure, we can see that the boxplots are very stretched, thus in the
same project there are some developers that do not return back after changing
microservice (or never change microservice) and some developers that instead,
commit to the previous microservice.

Fig. 1. # microservices with shared
and not shared developers (RQ1)

Fig. 2. Frequency that developers have
committed back (RQ1)

� As a result, we conclude that in an OSS context, the one-microservice-
per-developer strategy is not respected as in most cases, developers work on
more than one microservice in parallel.

RQ2 Which developer roles better respect the one-microservice-per-
developer strategy?

To tackle RQ2, we first investigated the strategies of different contributor-
microservice effort allocations. Figure 4 shows the distribution of the “microser-
vices per developer” of each of the selected projects. To be noted, the light-
example-4j, which contains 155 different microservices, is not shown in Fig. 4.
Because one outlier in this project reaches 154 microservices, showing this project
in the chart will make the details of all other projects invisible. Nonetheless, this
project was certainly included in the analysis process.

One Microservice per Developer: Is This the Trend in OSS? 27

Fig. 3. MS Per Developer sorted by
#Developer (RQ1)

Fig. 4. MS Per developer sorted by
#Microservice (RQ2)

From Fig. 4, we can easily find that for all the projects, the one-microservice-
per-developer strategy has not been respected. For the selected projects, the
majority of the medians range from one to seven. For all projects, there are
always some developers committing across multiple microservices.

On the contrary, many projects that contain various numbers of microser-
vices have one individual contributor who contributes to all the microservices.
We name such a strategy One-Dev-ALL-MS. For example, in project geoserver-
cloud, contributor gabriel.roldan committed in all the 11 microservices, and
in project eShopOnContainers, contributor mvelosop covers all the 17 microser-
vices. Furthermore, many projects even have multiple contributors that cover
all the microservices. We name such a strategy Multi-Dev-All-MS. For example,
in project loopback4-microservice-catalog, there are eight contributors covering
all 18 microservices; and in project DeathStarBench six contributors cover all
three microservices. It is likely that such a phenomenon is irrelevant to either
the microservice number or a number of contributors.

Based on this phenomenon, we can intuitively categorize the projects as
follows.

– One-Dev-ALL-MS projects: Projects where only one individual contributor
covers all microservices while all the others cover part of them (16 out of 38)

– Multi-Dev-ALL-MS projects: Projects with multiple contributors covering all
microservices (10 out of 38)

– Multi-Dev-SOME-MS projects : Any projects with no contributors covering all
microservices; nor do they adopt “One-microservice-per-developer” strategy
(12 out of 38)

– One-MS-per-developer projects: Any projects with each contributor/team
working only on one microservice

To further investigate the potential roles of the contributors that cover all
microservices and the other common contributors, we used EFA to detect the
latent factors.

1. Preprocessing. Firstly, for the preprocessing, we grouped the original
dataset by the contributors. For each contributor, we synthesized his/her con-
tribution in every language by checking the extensions of the committed files.

28 D. Amoroso d’Aragona et al.

We crawl each project’s languages using GitHub API. By grouping the data,
we obtained the 1 536 contributors’ dataset with their contribution to the 33
languages. And we further normalized the dataset into values between zero and
one.

2. Data Verification. Herein, the KMO score for this dataset is 0.585. It
shows that the sampling is adequate and applying factor analysis is useful for
this dataset. When applying PA to the dataset, we detected 13 factors as there
are 13 out of 33 observed eigenvalues greater than 1.0. The corresponding factor
loadings are shown in the replication package (see footnote 1).

3. Determining Factor Number. Based on the result of the parallel anal-
ysis (PA), the turning point can be found easily by examining the differences
between observed eigenvalues and simulated eigenvalues. Since the simulated
eigenvalue becomes greater than the observed eigenvalue in the 14th factor
(1.00049 and 0.90517, respectively), the first 13 factors are retained. The num-
ber of factors is therefore 13. According to Guadagnoli and Velicer [12], scores
greater than 0.4 are considered stable, especially when all variables are not cross-
loaded heavily.

4. Factor Extraction and Interpretation. The initially detected factors
and the correlated variables are reported in the replication package (see footnote
1). Herein, we adapted Montandon et al.’s role-language relevance results [23]
as the reference to analyze the interpretation of each factor. To be noted, we
added several languages that are not listed in Montandon et al’s study based on
common knowledge and experts’ opinions.

Meanwhile, we also considered the other contributors that are not related to
any specific roles above as Others. By calculating the KH similarity between the
role factors in the factor table obtained previously and the reference table [23].
Here we assigned the role with the highest similarity score to each factor.

Furthermore, we combined the factors with the same roles and obtained the
final role-factor reference model.

5. Determining Individual Developer Role Allocation. By using this
role-factor relevance model, we simply calculated the factor similarities of any
contributor, given his/her contribution allocation in terms of the 33 languages.
Furthermore, we investigated the difference in terms of the contributor roles of
the project strategies mentioned above.

Figure 5 shows the average behavior patterns of the different types of con-
tributors in terms of the technical roles. From Fig. 5, we can easily observe that
the individual contributors who cover all microservices (i.e., One-Dev-ALL-MS)
of the projects contribute largely as Documentation+. And they are also heavily
involved in Frontend, when slightly less in Backend and DevOps roles. To be
noted, they also contribute as Fullstack but are nearly non-existent in the other
aspects. In addition, the One-Dev-ALL-MS also contributes as the Data Scien-
tist role more than the others. On the other hand, for the multiple contributors
that cover all the microservices (i.e., Multi-Dev-ALL-Ms), these contributors, on
average, contribute less than the One-Dev-ALL-MS mentioned above. However,
they contribute slightly more as Frontend than the other roles. They cover the

One Microservice per Developer: Is This the Trend in OSS? 29

Fig. 5. Average Role-Factor Distribution of Each Strategy (RQ2)

Fullstack role a little less but surprisingly at a similar level compared to One-
Dev-ALL-MS. Furthermore, they contribute more in other languages that are
not role-related than that from the One-Dev-ALL-MS. The Multi-Dev-ALL-MS
also contributes to Backend, Documentation, and Data Scientist, but much less
than the other aspects. Regarding all the Multi-Dev-SOME-MS contributors,
they contribute much less in terms of all working roles than the One-Dev-ALL-
Ms and Multi-Dev-ALL-Ms.

� The majority of the microservice projects have one or multiple con-
tributors who commit to all microservices. The single contributor who cov-
ers all microservices (One-Dev-ALL-MS) contributes much more than the
multiple contributors covering all microservices (Multi-Dev-ALL-MS) in all
roles, except that Multi-Dev-ALL-MS contribute more in non-role-related lan-
guages. Multi-Dev-SOME-MS contribute much less in all roles.

5 Discussion

Using a large established 145-microservice project dataset [4] we selected 38
projects with a sufficient number of contributors and commits as a represen-
tative OSS sample. This project sample did not adopt the same strategy sug-
gested for proprietary (closed-source) software projects. In the analyzed sample
we identified that developers typically work on multiple microservices, and focus
on various features, often in parallel. These conclusions are also confirmed by
the vast majority of the projects when considering different developer roles.

One of the explanations might be the dynamics of OSS projects. In OSS
projects, developers commit their time voluntarily at random, non-fixed hours
and schedules, oftentimes driven by feature priority requests or error reports. In
particular, none of the selected projects is directly sponsored by a company that
allocates developers to the project. Therefore, developers commonly select a set

30 D. Amoroso d’Aragona et al.

of issues to be implemented (either new features or bug fixing) and work on them
independently rather than adopting the specific microservice that they maintain.
Another explanation might be that, despite the decentralized nature of OSS
and the microservice architecture, OSS projects might not have yet assimilated
this strategy. Another reason might be the lack of clear teams in OSS projects
(i.e. each developer does not belong to a specific team), and therefore the “one-
microservice-per-developer” strategy might not be perceived as an issue.

It must also be recognized that additional effort and overhead are related to
the “one-microservice-per-developer” strategy. However, this might not be the
proper fit for the OSS environment and context. OSS projects are often driven
by small development teams or individuals who stand behind the entire project,
occasionally OSS projects have professional teams behind them (i.e., Red Hat);
however, we did not include these projects in the study.

Microservice architecture is the mainstream architecture for cloud-native sys-
tems. However, not necessarily all microservice systems are cloud-native. In a
similar parallel, the decentralized development model connected with cloud-
native systems might collide with the OSS development model. Perhaps the
main driver for the microservice architecture in these OSS projects is scalability
and the decentralized development aspect goes away with the OSS model.

As practitioners often suggest [1,3,4,27,30], if the development team is too
small to be split into multiple teams, and there are multiple microservices, to
respect the one-microservice-per-developer strategy, the system should rather
remain monolithic. The reasons for OSS might be prioritized system scalability
for the price of this strategy violation. Perhaps some projects might have decided
to split their systems into multiple microservices for maintainability reasons,
to increase the separation of concerns, or to better identify different business
domains, independently from the team that is working on the same services.

Another explanation might be given by Mariusz, who investigated whether
Conway’s Law applies to OSS projects [19] and concludes that teams “organize
themselves spontaneously around tasks, and since those tasks concern software
modules, teams naturally follow Conway’s law”.

The result of this study will serve the practitioners’ community to under-
stand how OSS microservice projects are being developed. Moreover, it will help
researchers to further investigate the one-microservice-per-developer strategy.

6 Threats to Validity

Construct Validity. Replying to RQ1 we tried to understand if the one-
microservice-per-developer strategy is adopted. But we measure how well this
strategy is adopted in an OSS context by analyzing individual developer behav-
ior and assuming that a single developer belongs to one team at a time. We rec-
ognized that this assumption could lead to some threats. We planned to expand
our work in the future by adding information (such as developer communications,
and issue/pull request comments) to extract teams to fine-grain our analysis.

One Microservice per Developer: Is This the Trend in OSS? 31

Internal Validity. The dataset used is one of the most recent in the context of
microservices and open-source projects. However, the dataset is very heteroge-
neous (for the number of microservices, the age of the projects, and the number
of developers), and we could only analyze a subset of the projects. We want to
extend the dataset to get a better picture of the real state of the art.

External Validity. The findings of this paper can be simply extended when more
microservice projects are taken into account. It is reasonable that all the cur-
rently included projects shall also inevitably evolve when the proposed method
should be replicated with the results updated. Especially for RQ2, the findings
can also be generalized to projects that are not specifically microservice-based if
we use modules or features to functionally separate the projects instead of using
microservices. In this way, such extended findings shall provide insights into
the collective contributor profiles for any given OSS project scope. In addition,
when the language-role relations can be further defined (e.g., new roles defined,
new languages assigned to different roles, etc.), the findings can also be updated
accordingly with the changes conducted in the reference table.

Reliability. Using the dataset we provided in the replication package(see footnote
1) with the same approach, the practitioners and scholars can easily obtain the
same results as described above. Only when any changes are introduced in the
data itself or when the interpretation of the obtained factors varies based on
different expertise, the findings shall differ accordingly.

7 Conclusion

Based on the suggestion of practitioners that “a developer should have exactly
one service unless there is a proven need to have multiple services” and the
assumption that developers developing open source software using a bazaar-style
software development model would encourage a “one microservice per devel-
oper” strategy, we learned in this study that OSS projects do not comply with
this strategy. Oftentimes, we could identify projects with a greater number of
microservices than project contributors, and the OSS development model with
a few main contributors dominated the proprietary software strategy. Still, we
must assume that the contributor dedication to OSS has a very different dynam-
ics than fully-funded organization projects that can afford multiple developers
with regular commitments to contribution. One might question if Conway’s law
collides with the OSS development model, and the results of this study add
weight to the doubts. In this work, we showed that OSS microservice projects
rarely follow the “one-microservice-per-developer” strategy.

We have demonstrated this by analyzing the OSS project source code repos-
itories of an established microservices project dataset. We further supported
this result by analyzing the different developers’ roles in contributing to these
projects.

32 D. Amoroso d’Aragona et al.

As future work, we aim at further study if “one-microservice per developer”
holds in OSS projects trying to observe emerging or stable developer-like collab-
orations between developers. To do so, we plan to analyze the commits of source
code repositories of microservice projects, also parsing the actual code modifica-
tions to understand if a collaboration took place. Also, following the suggestion
by Mariusz [19] projects, which states that “developers organize themselves spon-
taneously around tasks”, we plan to study issue-tracking systems in combination
with source code repositories to investigate if we are able to detect such sponta-
neous developers acting on single microservices. Moreover, we aim to investigate
the developers’ team composition to classify the developers who contribute to
the same code.

Acknowledgement. This work was supported by a grant from the Academy of Fin-
land (grant n. 349488 - MuFAno) and a grant from Business Finland (“6G-Bridge
6GSoft”).

References

1. Amazon: Service per team pattern (2023). https://docs.aws.amazon.com/presc
riptive-guidance/latest/modernization-decomposing-monoliths/service-per-team.
html

2. Ashraf, U., Mayr-Dorn, C., Mashkoor, A., Egyed, A., Panichella, S.: Do communi-
ties in developer interaction networks align with subsystem developer teams? An
empirical study of open source systems. In: International Conference on Software
and System Processes, pp. 61–71 (2021)

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52
(2016). https://doi.org/10.1109/MS.2016.64

4. Baresi, L., Quattrocchi, G., Tamburri, D.A.: Microservice Architecture Practices
and Experience: a Focused Look on Docker Configuration Files (2022). https://
doi.org/10.48550/ARXIV.2212.03107. https://arxiv.org/abs/2212.03107

5. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure
in open source projects. In: International Symposium on Foundations of Software
Engineering, pp. 24–35 (2008)

6. Blincoe, K., Harrison, F., Kaur, N., Damian, D.: Reference coupling: an explo-
ration of inter-project technical dependencies and their characteristics within large
software ecosystems. Inf. Softw. Technol. 110, 174–189 (2019)

7. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Industry practices and chal-
lenges for the evolvability assurance of microservices: an interview study and sys-
tematic grey literature review. Empirical Softw. Eng. 26(5), 1–39 (2021)

8. Carneiro, C., Schmelmer, T.: Microservices From Day One: Build robust and scal-
able software from the start. Apress (2016)

9. Conway, M.E.: How Do Committees Invent? Datamation (1968)
10. DeCoster, J.: Overview of factor analysis (1998)
11. Fowler, M.: CodeSmell (2006). https://martinfowler.com/bliki/CodeSmell.html
12. Guadagnoli, E., Velicer, W.F.: Relation of sample size to the stability of component

patterns. Psychol. Bull. 103(2), 265 (1988)

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/service-per-team.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/service-per-team.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/service-per-team.html
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.48550/ARXIV.2212.03107
https://doi.org/10.48550/ARXIV.2212.03107
https://arxiv.org/abs/2212.03107
https://martinfowler.com/bliki/CodeSmell.html

One Microservice per Developer: Is This the Trend in OSS? 33

13. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L., et al.: Multi-
variate data analysis, vol. 6 (2006)

14. Horn, J.L.: A rationale and test for the number of factors in factor analysis. Psy-
chometrika 30(2), 179–185 (1965)

15. Jermakovics, A., Sillitti, A., Succi, G.: Mining and visualizing developer networks
from version control systems. In: International Workshop on Cooperative and
Human Aspects of Software Engineering (2011)

16. Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.: From developer net-
works to verified communities: a fine-grained approach. In: International Confer-
ence on Software Engineering, pp. 563–573 (2015)

17. Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psy-
chometrika 23(3), 187–200 (1958)

18. Kaiser, H.F.: An index of factorial simplicity. Psychometrika 39(1), 31–36 (1974)
19. Kamola, M.: How to verify Conway’s law for open source projects. IEEE Access 7,

38469–38480 (2019). https://doi.org/10.1109/ACCESS.2019.2905671
20. Kumar, B.V., Hassebrook, L.: Performance measures for correlation filters. Appl.

Opt. 29(20), 2997–3006 (1990)
21. Lenarduzzi, V., Sievi-Korte, O.: On the negative impact of team independence in

microservices software development. In: XP Conference (2018)
22. Meneely, A., Williams, L.: Socio-technical developer networks: should we trust our

measurements? In: International Conference on Software Engineering, pp. 281–290
(2011)

23. Montandon, J.E., Valente, M.T., Silva, L.L.: Mining the technical roles of GitHub
users. Inf. Softw. Technol. 131, 106485 (2021)

24. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Springfield
(2015)

25. Ortu, M., Hall, T., Marchesi, M., Tonelli, R., Bowes, D., Destefanis, G.: Mining
communication patterns in software development: a github analysis. In: Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineer-
ing, PROMISE 2018, pp. 70–79 (2018)

26. Panichella, S., Bavota, G., Penta, M.D., Canfora, G., Antoniol, G.: How devel-
opers’ collaborations identified from different sources tell us about code changes.
In: International Conference on Software Maintenance and Evolution, pp. 251–260
(2014)

27. Qcon2022: Dark Energy, Dark Matter and the Microservices Patterns? (2022).
https://shorturl.at/etHM5

28. Raymond, E.S., O’Reilly, T.: The Cathedral and the Bazaar, 1st edn. O’Reilly &
Associates Inc., Springfield (1999)

29. Reinfurt, M.: The horror of microservices in small teams - and why you shouldn’t
build them (2021). https://shorturl.at/bgHKR

30. Richardson, C.: A pattern language for microservices (2021). https://shorturl.at/
bGS34

31. Shi, K.: Establishing contributor roles within software repositories by min-
ing architectural information (2021). https://fse.studenttheses.ub.rug.nl/25608/1/
bCS_ShiK.pdf

32. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn, vol. 54, pp. 71–82.
Iowa State University Press, Ames (1989)

33. Spinellis, D., Kotti, Z., Kravvaritis, K., Theodorou, G., Louridas, P.: A dataset
of enterprise-driven open source software. In: International Conference on Mining
Software Repositories, pp. 533–537 (2020)

https://doi.org/10.1109/ACCESS.2019.2905671
https://shorturl.at/etHM5
https://shorturl.at/bgHKR
https://shorturl.at/bGS34
https://shorturl.at/bGS34
https://fse.studenttheses.ub.rug.nl/25608/1/bCS_ShiK.pdf
https://fse.studenttheses.ub.rug.nl/25608/1/bCS_ShiK.pdf

34 D. Amoroso d’Aragona et al.

34. Wiese, I.S., et al.: Using contextual information to predict co-changes. J. Syst.
Softw. 128, 220–235 (2017)

35. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

36. Wolff, E.: Microservices Primer: A Short Overview. Leanpub (2021)

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

End-to-End Test Coverage Metrics
in Microservice Systems: An Automated

Approach

Amr S. Abdelfattah1 , Tomas Cerny2(B) , Jorge Yero Salazar1 ,
Austin Lehman1, Joshua Hunter1, Ashley Bickham1, and Davide Taibi3

1 Computer Science, Baylor University, One Bear Place, Waco, TX 97141, USA
amr elsayed1@baylor.edu

2 Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
tcerny@arizona.edu

3 University of Oulu, Oulu, Finland

davide.taibi@oulu.fi

Abstract. Microservice architecture gains momentum by fueling sys-
tems with cloud-native benefits, scalability, and decentralized evolution.
However, new challenges emerge for end-to-end (E2E) testing. Testers
who see the decentralized system through the user interface might assume
their tests are comprehensive, covering all middleware endpoints scat-
tered across microservices. However, they do not have instruments to
verify such assumptions. This paper introduces test coverage metrics for
evaluating the extent of E2E test suite coverage for microservice end-
points. Next, it presents an automated approach to compute these met-
rics to provide feedback on the completeness of E2E test suites. Further-
more, a visual perspective is provided to highlight test coverage across
the system’s microservices to guide on gaps in test suites. We implement
a proof-of-concept tool and perform a case study on a well-established
system benchmark showing it can generate conclusive feedback on test
suite coverage over system endpoints.

Keywords: microservices · end-to-end testing · API tests · test quality

1 Introduction

Microservice architecture enables practitioners to build scalable software systems
broken down into a collection of loosely coupled interacting services. Each service
is responsible for a specific business capability and can be developed and deployed
independently of other services. This allows for faster development cycles, easier
maintenance, and better scalability.

However, the end-to-end testing of microservice systems can be challenging
due to the system’s distributed nature hidden from testers. During E2E system
validation, testers primarily interact with the system through its user interface,

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 35–51, 2023.
https://doi.org/10.1007/978-3-031-46235-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_3&domain=pdf
http://orcid.org/0000-0001-7702-0059
http://orcid.org/0000-0002-5882-5502
http://orcid.org/0000-0002-5033-4805
http://orcid.org/0000-0002-3210-3990
https://doi.org/10.1007/978-3-031-46235-1_3

36 A. S. Abdelfattah et al.

thereby concealing the underlying logical system structure. However, microser-
vice architecture entails more intricate details compared to traditional mono-
lithic systems, including multiple services, inter-dependencies, and continuous
evolution. Testers may lack knowledge about the specific services being involved
and executed within the system. Consequently, they may encounter difficulties
in testing all possible scenarios. This complexity introduces challenges in E2E
testing of microservice systems, as it obscures crucial details that can influence
testing completeness and efficiency.

The extent to which a particular system’s microservices are involved in indi-
vidual E2E tests or E2E test suites should be recognized to give testers better
insights into system coverage and test-to-microservice dependencies (i.e., test
evolution). E2E tests interact with the system through the user interface which
mediates the interaction to microservice endpoint level. Thus, associating tests
with impacted microservice endpoints they interact with would provide testers
with insights into how comprehensive their test suites are when contrasted to all
system endpoints.

This paper aims to establish metrics for calculating the coverage of endpoints
in E2E test suites their individual tests, and microservices. Furthermore, it aims
to propose a practical method and measurement approach through a case study.
This work considers microservice endpoints as the points of overlap between
the logical system structure and the E2E tests. It proposes an automated app-
roach mapping individual tests to system microservices and their endpoints to
guide testers in test design completeness. With the detailed knowledge of test-
to-endpoint associations, testers can better understand their test suite coverage
and identify unobvious gaps.

This paper makes the following contributions in the context of microservices:

• Proposal of three metrics (Microservice endpoint coverage, Test case endpoint
coverage, and Complete Test suite endpoint coverage) to assess the coverage
of endpoints in E2E testing.

• Metric extraction process and proof-of-concept tool imlementation.
• A practical system case study deriving and validating the coverage metrics.

This paper elaborates on related work in Sect. 2 and describes the metrics
and process in Sect. 3. A case study is detailed in Sect. 4 followed by a discussion
in Sect. 5 and conclusions in Sect. 6.

2 Related Work

Various studies have identified the lack of assessment techniques for microservice
systems. A systematic literature review by Ghani et al. [3] concluded that most
articles focused on testing approaches for microservices lacked sufficient assess-
ment and experimentation. Jiang et al. [5] emphasized the need for improved
test management in microservice systems to enhance their overall quality.

Waseem et al. [9] conducted a survey and revealed that unit and E2E testing
are the most commonly used strategies in the industry. However, the complexity

E2E Test Coverage Metrics in Microservice Systems 37

of microservice systems presents challenges for their monitoring and testing, and
there is currently no dedicated solution to address these issues. Similarly, Gia-
mattei et al. [4] identified the monitoring of internal APIs as a challenge in black
box testing microservice systems, advocating for further research in this area.

To address these gaps, it is crucial to develop an assistant tool that improves
system testing and provides appropriate test coverage assessment methods. Cor-
radini et al. [1] conducted an empirical comparison of automated black-box test
case generation approaches specifically for REST APIs. They proposed a test
coverage framework that relies on the API interface description provided by the
OpenAPI specification. Within their framework, they introduced a set of cover-
age metrics, consisting of eight metrics (five request-related and three response-
related), which assess the coverage of a test suite by calculating the ratio of
tested elements to the total number of elements defined in the API. However,
these metrics do not align well with the unique characteristics of microservice
systems. They do not take into account the specific features of microservices,
such as inter-service calls and components like API gateway testing.

Giamattei et al. [4] introduced MACROHIVE, a grey-box testing approach
for microservices that automatically generates and executes test suites while
analyzing the interactions among inter-service calls. Instead of using the com-
monly used tools such as SkyWalking or Jaeger, MACROHIVE builds its own
infrastructure, which incurs additional overhead by requiring the deployment of
a proxy for each microservice to monitor. It also involves implementing com-
munication protocols for sending information packets during request-response
collection. MACROHIVE employs combinatorial tests and measures the status
code class and dependencies coverage of internal microservices. However, com-
pared to our proposed approach, MACROHIVE lacks static analysis of service
dependencies, relying solely on runtime data. In contrast, our approach extracts
information statically from the source code, providing accurate measurements
along with three levels of system coverage.

Ma et al. [6] utilized static analysis techniques and proposed the Graph-based
Microservice Analysis and Testing (GMAT) approach. GMAT generates Service
Dependency Graphs (SDG) to analyze the dependencies between microservices
in the system. This approach enhances the understanding of interactions among
different parts of the microservice system, supporting testing and development
processes. GMAT leverages Swagger documentation to extract the SDG, and
it traces service invocation chains from centralized system logs to identify suc-
cessful and failed invocations. The GMAT approach calculates the coverage of
service tests by determining the percentage of passed calls among all the calls,
and it visually highlights failing tests by marking the corresponding dependency
as yellow on the SDG. However, GMAT is tailored to test microservices using
the Pact tool and its APIs. In contrast, our approach introduces three coverage
metrics that focus on different levels of microservice system parts, emphasiz-
ing endpoints as fundamental elements of microservice interaction. While our
approach doesn’t consider the status code of each test, combining GMAT with

38 A. S. Abdelfattah et al.

our proposed approach could offer further insights for evaluating microservice
testing and assessment criteria.

In summary, this paper tackles the gap in assessment techniques for microser-
vice testing. It aims to introduce test coverage metrics and develop an analytical
tool that can assess microservice systems and measure their test coverage.

3 The E2E Test Coverage Metrics

This section presents our proposed metrics and provides a comprehensive
overview of our automated approach, outlining its stages for extracting the data
required for calculating the metrics over systems. The objective is to assess E2E
testing suites in achieving coverage of endpoints within microservices-based sys-
tems.

3.1 The Proposed Metrics Calculations

E2E testing involves test suites, where each test suite contains test cases that
represent a series of steps or actions defining a specific test scenario. We intro-
duce three metrics to assess the coverage of endpoints in microservice systems:
microservice endpoint coverage, test case endpoint coverage, and complete test
suite coverage. These metrics are described in detail below:

– Microservice endpoint coverage: determines the tested endpoints within
each microservice. It is obtained by dividing the number of tested endpoints
from all tests by the total number of endpoints in that microservice. This
metric offers insights into the comprehensiveness of coverage for individual
microservices. The formula for microservice endpoint coverage is:

Cms(i) =
|Etested

ms(i) |
|Ems(i)| ;

Cms(i)- the coverage per microservice i,

Etested
ms(i) - the set of tested endpoints in microservice i,

Ems(i) - the set of all endpoints in microservice i.

– Test case endpoint coverage: gives a percentage of endpoints covered by
each test case. It is calculated by dividing the number of endpoints covered
by each test by the total number of endpoints in the system. This provides
insights into the effectiveness of individual tests in covering the system’s end-
points. The formula for test case endpoint coverage is:

E2E Test Coverage Metrics in Microservice Systems 39

Ctest(i) =
|Etested

test(i)|
|⋃m total

j Ems(j)|
;

Ctest(i) - the coverage per test i,

Etested
test(i) - the set of tested endpoints from test i,

m total - the total number of microservices in the system,

m total⋃

j

Ems(j) - the set of all endpoints in the system.

– Complete Test suite endpoint coverage: determines the test suite overall
coverage of the system by dividing the total number of unique endpoints
covered by all tests by the total number of endpoints in the system. It provides
insights into the completeness of test suites in covering all endpoints within
the system. The formula for complete test suite endpoint coverage is:

Csuite =
|⋃t total

i Etested
test(i)|

|⋃m total
j Ems(j)|

;

Csuite - the complete test suite coverage,

m total - the total number of microservices in the system,

t total - the total number of tests in the test suite,

t total⋃

i

Etested
test(i) - the set of all tested endpoints from all tests,

m total⋃

j

Ems(j) - the set of all endpoints in the system.

To provide further clarification, consider a system consisting of three
microservices (MS-1, MS-2, MS-3), each with two endpoints, with a test suite
composed of two tests (Test-1, Test-2), as depicted in Fig. 1. In the example, the
tests interact with endpoints through the user interface, which triggers the ini-
tiation of endpoint requests passed through the API gateway component. The
example demonstrates that Test-1 calls two endpoints, one from MS-1 (E1.1)
and one from MS-2 (E2.1). On the other hand, Test-2 calls two endpoints from
MS-2 (E2.1, E2.2), E2.2 has an inter-service call to endpoint E3.1 in MS-3.

Applying our metrics, we can calculate the microservice endpoint coverage
(Cms(i)) for each microservice. For MS-1 and MS-3, only one out of their two
endpoints is tested throughout all tests, resulting in a coverage of 50% (Cms(1) =
Cms(3) = 1

2) for each. However, for MS-2, both of its endpoints are tested at least
once, leading to a coverage of 100% (Cms(2) = 2

2).
Next, we calculate the test case endpoint coverage (Ctest(i)) per each

test.Test-1 covers two out of the six endpoints in the system, resulting in a

40 A. S. Abdelfattah et al.

coverage of approximately 33.3% (Ctest(1) = 2
6). Test-2 covers three distinct end-

points, resulting in a coverage of 50% (Ctest(2) = 3
6). It is important to highlight

that Test-2 contains an inter-service call to endpoint E3.1, which is considered
in our approach.

Fig. 1. Calculation Clarification Example

Finally, we can calculate the complete test suite endpoint coverage (Csuite)
of the system. Out of the six endpoints in the system, four distinct endpoints
are tested from the two tests. This results in ≈ 66.6% coverage (Csuite = 4

6).

3.2 The Metrics Extraction Process

To automatically collect the data for calculating the test coverage metrics, we
propose to employ a combination of static and dynamic analysis methods.

The static analysis phase focuses on examining the source code to extract
information about the implemented endpoints in the system. The dynamic anal-
ysis phase involves inspecting system logs and traces to identify the endpoints
called by the automation tests. By combining the data obtained from both analy-
ses, the approach applies the proposed metrics to generate the E2E endpoint cov-
erage, and then it provides two visualization approaches to depict the coverage
over the system representation. This process involves the following four stages
as illustrated in Fig. 2:

Stage 1. Endpoint Extraction From Source Code (Static Analysis).
Stage 2. Endpoint Extraction From Log Traces (Dynamic Analysis).
Stage 3. Coverage Calculation.
Stage 4. Coverage Visualization.

We will delve into the details of each stage to demonstrate the approach.

E2E Test Coverage Metrics in Microservice Systems 41

Stage 1: Expoint Extraction from Source Code (Static Analysis): Our
approach applies a static analysis approach to the system’s source code to extract
the employed endpoints in each microservice (Ems(i)). Static analysis refers to
the process of analyzing the syntax and structure of code without executing
it in order to extract information about the system. As depicted in Fig. 3, ini-
tially, microservices can be divided and detected from the system codebase. Each
microservice’s codebase is then processed by the endpoint extraction process,
which produces the endpoints corresponding to each microservice.

The identification of API endpoints typically relies on specific frameworks
or libraries. For example, in the Java Spring framework, annotations such as
@RestController and @RequestMapping are commonly used. This ensures con-
sistency in metadata identification. Code analysis extracts metadata attributes
about each endpoint, including the path, HTTP method, parameters, and return
type. However, identification of endpoints can be performed across platforms as
demonstrated by Schiewe et al. [7] or accomplished by frameworks like Swagger1

Fig. 2. The proposed approach overview

Fig. 3. Stage 1: Static analysis flow

As a result, a list of endpoints is generated and organized according to the
respective microservice they belong to. This comprehensive list of endpoints
becomes one of the inputs for our coverage calculation process, where it combines
the output of the dynamic analysis flow.
1 Swagger https://swagger.io.

https://swagger.io

42 A. S. Abdelfattah et al.

Stage 2: Endpoint Extraction from Log Traces (Dynamic Analysis):
We utilize dynamic analysis to identify the endpoints called during the execu-
tion of each test case in test suites (Etested

test(i). It also identifies the microservices
containing these tested endpoints (Etested

ms(i)). The analyzed system is executed to
observe its runtime behavior and transactions. This analysis involves running
multiple E2E tests and capturing the traces that occur, as illustrated in Fig. 4.

Fig. 4. Stage 2: Dynamic analysis flow

The dynamic analysis flow sketched in Fig. 4 has two main responsibilities.
Firstly, it takes the tests and executes them sequentially. During the execution of
the E2E tests, traces are generated, capturing the interactions with the system.
These traces are sent to a configured centralized logging system (i.e., SkyWalk-
ing, Jaeger), which stores them in its own storage, or an externally configured
data storage solution (i.e., Elasticsearch), enabling analysis and further process-
ing. Secondly, the process calculates the delta of the produced traces to identify
the traces relevant to each executed test. This can be achieved in various ways,
such as recording a timestamp from the start of a test’s execution to its comple-
tion, retrieving the traces after each test execution and calculating the difference
based on the latest track record, or sending a dynamically generated trace before
and after the execution of each test to mark the start and end. In our approach,
we have employed the first strategy, as it avoids unnecessary processing and
complexity at this stage.

The extracted test trace sequences corresponding to each test undergo a
traces filtration process that filters and identifies the traces related to end-
points. This may involve queries to the trace storage to return specific trace
indexes in the data. For instance, the SkyWalking tool marks the traces involv-
ing endpoint calls and makes them accessible under an index (in particular,
sw endpoint relation server side index). Additionally, centralized logging
systems encode the data records using Base642 when sending them to exter-
nal storage like Elasticsearch. Therefore, this step may include an additional
decoding process if needed to detect the endpoints. These endpoint-related trace
records contain information about the source and destination endpoints involved
in the call relationship.

As a result, a list of endpoints is generated and organized according to the
respective test suite they belong to. This list of endpoints becomes the second

2 Base64: https://developer.mozilla.org/en-US/docs/Glossary/Base64.

https://developer.mozilla.org/en-US/docs/Glossary/Base64

E2E Test Coverage Metrics in Microservice Systems 43

input for the coverage calculation process, where it is combined with the output
of the static analysis stage.

Stage 3: Coverage Calculation: This stage combines the extracted equa-
tions from the previous two stages to calculate the three metrics of coverage
(Cms(i), Ctest(i), Csuite).

A challenge arises when matching the extracted system endpoints from
the source code with those extracted from the traces. Since traces contain
invoked endpoints with arguments’ values, while those identified by static anal-
ysis hold parameter types and names. A similar challenge has been accounted
for when profiling systems using log analysis and matching log lines with log-
ging statements in the source code [11]. The source code contains a log mes-
sage template with parameters, and execution logs contain a message with val-
ues from the execution context, which is not a direct match (i.e., source code
log.info(’calling {a} from {b}’) vs. a contextual log statement ’calling
for from bar’ where both a and b are interpreted). Zhao et al. have identified
all code log statements to extract templates that could be matched using regular
expressions to identify and match the parameter types whose values are present
in the log output.

In our approach, we employ signature matching to solve the challenge. It
involves comparing the endpoint method signature with the data and parameters
exchanged during REST calls communication to detect and verify the authen-
ticity and matches of the requests. Thus, to determine which system endpoints
were called by the test we consider the comparison of extracted attributes of the
endpoints (such as path, request type, and parameter list) from the source code
with the REST calls extracted from the test traces. This matching process helps
to establish the coverage levels and determine which endpoints were effectively
exercised by the tests.

Stage 4: Coverage Visualization: The approach offers two ways to visual-
ize these coverage metrics. The first displays a list of microservices, with each
microservice showing its endpoints. Covered endpoints are marked in green, while
missed endpoints are marked in red, as demonstrated in Fig. 7a. The second
representation utilizes the service dependency graph, where microservices are
represented as nodes, and the dependencies between them are shown as edges.
The nodes in the graph are color-coded based on the coverage percentage, allow-
ing users to visually observe the coverage on the holistic system view depicting
service dependencies, as exampled in Fig. 7b. These techniques help in visualiz-
ing the two metrics of Cms(i) and Ctest(i). Thus, these coverage calculations and
visualizations provide valuable insights into the extent of test coverage achieved
by automation frameworks in the context of microservices, enabling users to
assess the effectiveness of their testing efforts and identify areas that require
improvement.

44 A. S. Abdelfattah et al.

4 Case Study

To demonstrate the completeness of our approach, we implemented a proto-
type and conducted a case study on an open-source system benchmark and an
E2E test suite designed for the same system. We calculated our metrics on the
testbench and compared the results with a manually calculated ground truth.

4.1 Proof of Concept Implementation

This section describes the implementation of a prototype3 to showcase the four
phases of the proposed approach. We focused on statically analyzing Java-based
project source codes that use the Java Spring Cloud framework, an open-source
framework that is widely used for building cloud-native applications. It provides
developers with a comprehensive set of tools and libraries to build scalable and
resilient applications in the Java ecosystem.

For the endpoint extraction from source code (Stage 1), we utilized the open-
source JavaParser4 library. It allowed us to parse Java source code files, generate
an Abstract Syntax Tree (AST) representation, and traverse it to detect spring
annotations such as @GetMapping and @PostMapping. We extracted the relevant
attributes once the endpoints were detected.

For the endpoint extraction from log traces (Stage 2), we utilized Apache
Maven, a build automation tool for Java projects, to execute our JUnit test
suites. JUnit, a widely adopted unit testing framework, offers seamless inte-
gration with various automation test frameworks, including Selenium. On the
other hand, we focused on extracting logs and traces from Elasticsearch, which
is widely adopted as a central component in the ELK5 (Elasticsearch, Logstash,
Kibana) stack. We used the Elasticsearch Java High-Level REST Client6, which
offers a convenient way to interact with Elasticsearch. It provided a QueryBuilder
class to construct queries for searching and filtering data, such as creating a query
to retrieve the logs that are between specific start and end timestamps.

Then, the prototype performs the coverage calculation (Stage 3). It integrates
the results of the static and dynamic processes, and applies the proposed met-
rics. For the coverage visualization (Stage 4), we provided the two visualization
approaches discussed earlier. We implemented a web application7 that presents
the information in an expandable list view for easy navigation. To integrate with
the service dependency graph visualization, we utilized the Prophet library8, an
open-source project that generates the graph from source code. Additionally, we

3 Prototype: https://github.com/cloudhubs/test-coverage-backend.
4 JavaParser: https://github.com/javaparser/javaparser.
5 ELK: https://aws.amazon.com/what-is/elk-stack.
6 Elasticsearch Java Client: https://www.elastic.co/guide/en/elasticsearch/client/

java-rest/current/java-rest-high.html.
7 Coverage Visualizer: https://github.com/cloudhubs/test-coverage-frontend.
8 Prophet: https://github.com/cloudhubs/graal-prophet-utils.

https://github.com/cloudhubs/test-coverage-backend
https://github.com/javaparser/javaparser
https://aws.amazon.com/what-is/elk-stack
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html
https://github.com/cloudhubs/test-coverage-frontend
https://github.com/cloudhubs/graal-prophet-utils

E2E Test Coverage Metrics in Microservice Systems 45

utilized the visualizer library9, which offers a tailored 3D microservices visual-
ization for service dependency graphs.

4.2 Benchmark and Test Suites

To ensure unbiased testing of our application, we utilized an open-source test-
bench consisting of the TrainTicket system and associated test suites.

TrainTicket [2] is a microservice-based train ticket booking system that is
built using the Java Spring framework. It uses the standard annotations for
defining the endpoints and uses the RestTemplate Java client to initiate requests
to endpoints. This benchmark consists of 41 Java-based microservices and makes
use of Apache SkyWalking10 as its application performance monitoring system.

In order to run the TrainTicket system and execute tests on it, certain config-
uration fixes were necessary. To address this, a fork11 of the TrainTicket reposi-
tory was created, specifically from the 1.0.0 release. This fork incorporated the
necessary fixes and a deployment script. TrainTicket integrates with Elastic-
search, allowing our prototype to utilize SkyWalking for forwarding system logs
to Elasticsearch for additional processing and analysis.

For the test suites, we utilized an open-source test benchmark12 published
in [8]. This benchmark aims to test the same version of the TrainTicket system.
It contains 11 E2E test cases using the Selenium framework.

4.3 Ground Truth

To validate the completeness of our approach, we performed a manual anal-
ysis to construct the ground truth for the test benches. The complete results
of the ground truth are published in an open accessed dataset13. This involved
manual extraction of the data related to the first two stages in our proposed pro-
cess in Sect. 3.2, as follows: endpoint extraction from source code and endpoint
extraction from log traces.

For Stage 1, we validated the endpoints extracted during the static analysis
by manually inspecting the source code of the microservices’ controller classes.
This allowed us to identify and extract information such as the endpoint’s path,
request type, parameter list, and return type. This process extracted 262 defined
endpoints in the TrainTicket testbench codebase.

For Stage 2, we validated the endpoints extracted during the dynamic analy-
sis by examining the Selenium test suites. Since the Selenium tests do not explic-
itly reference endpoints but rather perform UI-based actions, we manually ana-
lyzed the logs generated by the tests, which were stored in Elasticsearch. These
logs contained encoded information about the source and destination endpoints,

9 3D Visualizer: https://github.com/cloudhubs/graal mvp.
10 SkyWalking: https://skywalking.apache.org/docs.
11 TrainTicket: https://github.com/cloudhubs/train-ticket/tree/v1.0.1.
12 Test benchmark: https://github.com/cloudhubs/microservice-tests.
13 Dataset: https://zenodo.org/record/8055457.

https://github.com/cloudhubs/graal_mvp
https://skywalking.apache.org/docs
https://github.com/cloudhubs/train-ticket/tree/v1.0.1
https://github.com/cloudhubs/microservice-tests
https://zenodo.org/record/8055457

46 A. S. Abdelfattah et al.

which we decoded and filtered to extract the list of endpoints called during the
tests. It produced 171 unique endpoints from the logs.

4.4 Case Study Results

We began the execution by running the deployment script to set up the
TrainTicket system on a local instance. Subsequently, our prototype executed
the test cases from the provided test benchmark, generated the list of called
endpoints and calculated the test coverage according to the described metrics.

The results of the experiment execution revealed a total of 171 unique end-
points extracted from a set of 953 log records generated during the execution
of the test cases, out of which 119 endpoints are actual endpoints within the
system, 52 endpoints that are related to API-gateway calls. The complete data
analysis phases with their results are published in a dataset (see footnote 13).
This dataset contains the complete calculations of Cms(i), Ctest(i) metrics.

In terms of evaluating the completeness of our prototype, this case study
confirmed that we captured all the endpoints declared in the ground truth. The
prototype successfully captured all 262 implemented endpoints in the system,
demonstrating the completeness of Stage 1 outcome. For Stage 2 completeness,
the prototype extracted all 171 endpoints. Out of the total 171 endpoint calls,
our prototype identified 52 distinct calls associated with the API gateway, which
are not considered actual endpoints in the system.

Through the complete data extraction, we calculate the complete test suite
coverage to be approximately 45.42% (Csuite = 119

262 ≈ 45.42%). The summary
statistics for the metrics calculations are provided in Table 1.

The calculation of Ctest(i) shows that the maximum coverage achieved by a
test case in the study is approximately 15.27%. This was observed in the Booking
test case, which made 53 calls to 40 unique endpoints in the system. On the
other hand, the minimum coverage is approximately 1.14%, which occurred in
the Login test case that only called three endpoints. The analysis shows that
the average test case endpoint coverage is approximately 7.29%, while the most
common coverage among the test cases is approximately 7.25%. This coverage
was observed in the following five test cases: AdminConfigList, ContactList,
PriceList, AdminStationList, and AdminTrainList. Figure 5 illustrates the
endpoint coverage achieved by the 11 test cases, along with the average coverage
for better measurement.

Table 1. Summary Statistics of Coverage Metrics

Metric Coverage (%)

Csuite 45.42

Minimum Average Maximum Mode

Cms(i) 0 44.5 100 25

Ctest(i) 1.14 7.29 15.27 7.25

E2E Test Coverage Metrics in Microservice Systems 47

Te
st

 c
as

e
E

nd
po

in
t C

ov
er

ag
e

(%
)

0

2

4

6

8

10

12

14

16

Boo
kin

g

Use
rLi

st

Adm
inC

on
fig

Lis
t

Con
tac

tLi
st

Pric
eL

ist

Adm
inS

tat
ion

Lis
t

Adm
inT

rai
nL

ist

Rou
teL

ist

Orde
rLi

st

Trav
elL

ist
Lo

gin

Fig. 5. Test case Endpoint Coverage in the Benchmark Test cases (Ctest(i))

The calculation of Cms(i) reveals that the maximum coverage is 100%,
observed in the ts-verification-code-service which has two endpoints cov-
ered by the test cases. On the other hand, the minimum coverage is 0%,
indicating that the test suite completely missed testing any endpoints in the
following four microservices: ts-wait-order-service, ts-preserve-other-service, ts-
notification-service, and ts-food-delivery-service. The average microservice end-
point coverage is approximately 44.5%, while the mode statistics show that 25%
is the most common coverage, observed in the following four microservices:
ts-travel2-service, ts-payment-service, ts-route-plan-service, and ts-order-other-
service. The complete calculations for each microservice are illustrated in Fig. 6.

The metrics calculations are visualized using two visualization approaches, as
shown in Fig. 7a and Fig. 7b. One with per service view and the other providing
the holistic service dependency overview in the context of endpoint coverage.
For example, the ts-config-service microservice has an approximate cover-
age of 83.33%, missing only one out of six endpoints. This information is also
represented in yellow color in the 3D graph visualization, where the color of each
node corresponds to the coverage percentage of the respective microservice.

5 Discussion

Our approach has shown promising results in mitigating E2E test degradation
and contributing to the continuous reliability and quality assurance of decentral-
ized microservice systems. While further comprehensive data analysis is ongoing,
initial findings indicate a positive impact. It determines the log traces connect-
ing tests with endpoints from the current system and a current test suite by
automated means. Such traces can help testers manage change propagation as
it directly indicates a co-change dependency between specific microservices or
endpoints and particular tests. Furthermore, integrating it with CI/CD pipelines
would make it an ideal tool to ensure coverage across system evolution changes.
On the other hand, it is crucial to consider the context in which the approach

48 A. S. Abdelfattah et al.

85.71%
56.25%
85.71%
75%
66.67%
46.15%
83.33%
71.43%
71.43%
62.5%
80%
25%
75%
60%
50%
25%
66.67%
66.67%
66.67%
50%
40%
22.22%
22.22%
22.22%
100%
50%
33.33%
33.33%
25%
25%
20%
20%
20%
16.67%
16.67%
0%
0%
0%
0%

ts-admin-basic-info-service(21)
ts-order-service(16)
ts-travel-service(13)
ts-station-service(9)

ts-train-service(8)
ts-price-service(7)

ts-contacts-service(8)
ts-route-service(7)
ts-user-service(7)

ts-config-service(6)
ts-order-other-service(16)
ts-admin-user-service(5)

ts-travel2-service(12)
ts-auth-service(6)

ts-admin-travel-service(5)
ts-admin-route-service(4)

ts-assurance-service(9)
ts-food-service(9)

ts-inside-payment-service(9)
ts-admin-order-service(5)

ts-basic-service(4)
ts-cancel-service(3)

ts-seat-service(3)
ts-execute-service(3)

ts-verification-code-service(2)
ts-security-service(6)
ts-consign-service(6)

ts-consign-price-service(5)
ts-station-food-service(5)

ts-travel-plan-service(5)
ts-payment-service(4)

ts-route-plan-service(4)
ts-rebook-service(3)

ts-train-food-service(3)
ts-preserve-service(2)

ts-food-delivery-service(9)
ts-notification-service(7)
ts-wait-order-service(4)

ts-preserve-other-service(2)

0 2 4 6 8 10 12 14 16 18 20 22

Covered Endpoints Non-covered Endpoints

Fig. 6. Microservice Endpoint Coverage in the Benchmark System (Cms(i)) The num-
bers in parentheses indicate the total number of endpoints in each ms.

is applied, as the user interface may not interact with all middleware endpoints.
This can be reflected in the provided metrics, indicating that the E2E test might
not achieve 100% coverage. At the same time, it raises the question of whether
the remaining endpoints represent the smell known as Nobody Home where the
wiring is missing from the user interface, or possibly the endpoints are outdated
or dead code.

It is worth noting that microservices often implement isAlive endpoints
for health checks. While some libraries, like Hystrix, can automatically gener-
ate these endpoints, some systems implement them manually. As an example,
Train-Ticket implemented 39 endpoints that were not utilized in the user inter-
face, rendering them meaningless. Nevertheless, validating these endpoints can
guarantee that the system is correctly initialized.

5.1 Threats to Validity

In this section, we address the potential validity threats to our approach. We
adopt Wohlin’s taxonomy [10], which encompasses construction, external, inter-
nal, and conclusion threats to validity, as a framework for our analysis.

E2E Test Coverage Metrics in Microservice Systems 49

Fig. 7. Microservices endpoint coverage visualization (full pictures (see footnote 7))

A potential construction validity threat arises from the dependency on
static analysis for endpoint extraction and dynamic analysis of centralized traces
generated by E2E tests. It includes missing or non-standard source code and a
lack of support for centralized traces, which can hinder our approach.

Our prototype is currently implemented for specific programming languages
and frameworks. However, it is important to note that the methodology itself
is not limited to these specifications. It can be adapted and applied to other
languages and frameworks, mitigating construction threats related to dependen-
cies. Moreover, asynchronous messaging poses a potential risk to test execution
by causing ghost endpoint call trace events. To mitigate this threat, potential
approaches include disabling asynchronous services or conducting repeated test
executions to minimize the impact.

Internal validity threats arise from potential mismatches between the
extracted endpoint signatures from the source code and the traces. Although
overloads are infrequent, inaccurate matching may occur due to trace values
not aligning precisely with the defined types in the code. For example, if a
trace contains an integer in the URL, it may match with an integer parameter
type even if the corresponding endpoint has a string parameter type. Moreover,
Multiple authors collaborated to ensure accurate data and calculations. They
independently verified and cross-validated the results, rotating across validation
processes to minimize learning effects.

To address external validity threats, our case study utilized a widely
recognized open-source benchmark to evaluate its endpoints coverage using our
proposed approach. Still, it is important to acknowledge that the results and
conclusions drawn from this specific benchmark may not fully represent the entire
range of microservices systems that adhere to different standards and practices.

One potential conclusion validity threat is that our tool was tested on
an open-source project rather than an industry project. However, we aimed

50 A. S. Abdelfattah et al.

to address this by selecting an open-source project that employed widely-used
frameworks in the industry. Furthermore, to ensure the reliability and consis-
tency of our results, we performed the case study in multiple environments and
confirmed that the outcomes remained consistent.

6 Conclusion

Despite the broad adoption of microservices for software solutions, there are
open challenges practitioners face with E2E testing. While testers might assume
complete test coverage, verification mechanisms on the actual state of test com-
pleteness within the system are missing. We sought to define metrics and estab-
lish an approach to calculate the E2E test suites coverage of microservice system
endpoints. Our approach determines the connection between individual tests and
microservice endpoints, which are the system entry points for user interfaces used
by E2E testers. We performed a case study on an established system benchmark
and a test suite aiming for full coverage, revealing that the achieved coverage
fell significantly short of being comprehensive.

In future work, we will explore system and test suite evolution, evaluating
how our approach guides co-coupling between system changes and tests to ensure
quality assurance and reduce test suite degradation. We also plan to expand our
metrics to encompass different test paths within the endpoints.

Acknowledgements. This material is supported by the National Science Foundation
under Grant No. 2245287 and Grant No. 349488 (MuFAno) from the Academy of
Finland.

References

1. Corradini, D., Zampieri, A., Pasqua, M., Ceccato, M.: Empirical comparison of
black-box test case generation tools for restful APIs. In: 2021 IEEE 21st Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 226–236 (2021). https://doi.org/10.1109/SCAM52516.2021.00035

2. FudanSELab: Home. https://github.com/FudanSELab/train-ticket/wiki
3. Ghani, I., Wan-Kadir, W.M., Mustafa, A., Imran Babir, M.: Microservice testing

approaches: a systematic literature review. Int. J. Integr. Eng. 11(8), 65–80 (2019).
https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/3856

4. Giamattei, L., Guerriero, A., Pietrantuono, R., Russo, S.: Automated grey-box
testing of microservice architectures. In: 2022 IEEE 22nd International Conference
on Software Quality, Reliability and Security (QRS), pp. 640–650 (2022)

5. Jiang, P., Shen, Y., Dai, Y.: Efficient software test management system based
on microservice architecture. In: 2022 IEEE 10th Joint International Information
Technology and Artificial Intelligence Conference, vol. 10, pp. 2339–2343 (2022)

6. Ma, S.P., Fan, C.Y., Chuang, Y., Lee, W.T., Lee, S.J., Hsueh, N.L.: Using service
dependency graph to analyze and test microservices. In: 2018 IEEE 42nd Annual
Computer Software and Applications Conference, vol. 2, pp. 81–86 (2018)

https://doi.org/10.1109/SCAM52516.2021.00035
https://github.com/FudanSELab/train-ticket/wiki
https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/3856

E2E Test Coverage Metrics in Microservice Systems 51

7. Schiewe, M., Curtis, J., Bushong, V., Cerny, T.: Advancing static code analysis
with language-agnostic component identification. IEEE Access 10, 30743–30761
(2022). https://doi.org/10.1109/ACCESS.2022.3160485

8. Smith, S., et al.: Benchmarks for end-to-end microservices testing (2023)
9. Waseem, M., Liang, P., Shahin, M., Di Salle, A., Márquez, G.: Design, monitoring,

and testing of microservices systems: the practitioners’ perspective. J. Syst. Softw.
182, 111061 (2021)

10. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

11. Zhao, X., et al.: lprof: a non-intrusive request flow profiler for distributed systems.
In: 11th {USENIX} Symposium on Operating Systems Design and Implementa-
tion, pp. 629–644 (2014)

https://doi.org/10.1109/ACCESS.2022.3160485
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Quality of Service

Time-Aware QoS Web Service Selection
Using Collaborative Filtering: A

Literature Review

Ezdehar Jawabreh1,2(B) and Adel Taweel1

1 Department of Computer Science, Birzeit University, Birzeit, Palestine
{eajawabreh,ataweel}@birzeit.edu

2 Palestine Polytechnic University, Hebron, Palestine
ezdehar@ppu.edu

Abstract. The large increase in the number of available Web services
makes the selection of suitable services a big challenge. Several meth-
ods have been developed to predict the Quality of Service (QoS) values
in order to solve the service selection problem. However, these methods
face many limitations that hinder their prediction accuracy. A particu-
lar issue is the dynamic nature of the service environment, which causes
variations in QoS values (due to network load, hardware problems, etc.).
To overcome, QoS selection methods have utilized contextual informa-
tion, of the surrounding environments, such as service invocation time
and/or user and service locations. Amongst these methods are Collab-
orative Filtering(CF). In the last few years, several CF methods have
augmented service invocation time in their prediction process, forming,
what is popularly known as, time-aware CF methods. However, current
research lacks a dedicated and comprehensive literature review on time-
aware CF prediction methods. To this end, this paper analysed the lit-
erature and reviewed forty (40) most prominent studies in this field.
It provides a thematic categorization of these studies and an insightful
analysis detailing their objectives, benefits, and limitations. It identifies
the main research gaps and possible research directions for future work.
The literature review provides a state-of-the-art update for researchers
pursuing research in service oriented computing.

Keywords: Web service · QoS · Time-aware · Prediction ·
Collaborative Filtering (CF)

1 Introduction

Service Oriented Architecture (SOA) has become a promising paradigm in sys-
tem engineering. Many systems are built by integrating services as their basic
units of building. With many service providers, we witness a proliferation in
the number of services and selecting the right service amongst the many pro-
viding similar functionality is a challenging task. To optimize, one approach,

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 55–69, 2023.
https://doi.org/10.1007/978-3-031-46235-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_4&domain=pdf
http://orcid.org/0000-0002-1781-820X
http://orcid.org/0000-0003-0240-9857
https://doi.org/10.1007/978-3-031-46235-1_4

56 E. Jawabreh and A. Taweel

services are selected based on their Quality of Service (QoS) attributes (i.e. non-
functional properties, such as response time, throughput, etc.). However, some
QoS attributes are not stable, as they are declared by the service provider. For
example, in the well-known real QoS dataset WSDREAM [43], the response
time attribute fluctuates around a range of [0 s-20 s]. So predicting dynamic QoS
attributes is a crucial task that has gained research interest in the last decade.

In a dynamic environment, a user may receive different QoS values from the
same service due to changes in the service load (number of clients) and net-
work conditions (e.g. congestion) along with time, so time is considered a crucial
factor that affects the accuracy of prediction. In response, time-aware Collabo-
rative Filtering (CF) methods have been proposed for predicting QoS in such
environments. The recent research witnessed a clear orientation toward utiliz-
ing these types of methods for QoS prediction, actually various reasons caused
this orientation: first, they have achieved a remarkable improvement in the pre-
diction accuracy due to their ability to augment various contextual information
related to users and services, [29,33,49]. Second, they have proved their usability
in different applications in the service computing field such as service selection,
composition, adaptation, and fault tolerance [50]. Third, they have the ability
to leverage large historical data to make predictions with respect to current or
future times. Lastly, they can accommodate the recent changes in the dynamic
environment, such as new incoming QoS values or new incoming users and ser-
vices.

Due to the aforementioned points, we performed a comprehensive literature
review that tackled time-aware QoS prediction in CF methods. Our review was
performed in a systematic manner, we searched four known digital scientific
libraries, including IEEExplore, Springer, ScienceDirect, and ACM. The review
included studies published in the years between 2011 and 2022. Two inclusion
criteria were used to limit the scope of this review which were: the inclusion of
studies that proposed a time-aware QoS prediction method, and the proposed
method should be a CF one. In the first criterion, a method was considered time-
aware if it predicted QoS with respect to the current time or if it forecasted QoS
in the future time. In the second criterion, a method was considered CF if it
exploited data of other users and services when making predictions.

In the end, we identified a total of 40 prominent studies that reflect the state-
of-the-art. We categorized them thematically into three categories: 1)time-aware
neighborhood CF, 2) time-aware model-based CF, and 3) time-aware hybrid
approaches. To the best of our knowledge, this is the first literature review that
is dedicated to time-aware CF methods, the previous work in CF discussed time-
aware methods within the general context of other types. The specialization in
our review is beneficial for researchers who seek comprehensive state-of-the-art
time-aware methods. Indeed, we identified the main research challenges that face
researchers in time-aware CF, and we provided potential research directions that
guide researchers for further research in this area.

The rest of the review is organized as follows: Sect. 2 presents the related
work. Section 3 describes our classification and the approaches under each cate-

Time-Aware QoS Web Service 57

gory. Section 4 discusses research challenges and directions. Finally, we conclude
our work in Sect. 5.

2 Related Work

CF methods have received the attention of researchers in the last decade. There
are several studies that reviewed and summarized these methods. These studies
are general and not dedicated to any specific type, however, this literature review
is dedicated only to the time-awareness CF methods, and to the best of our
knowledge there are no reviews that have been conducted in this field. However,
we will discuss these general studies according to their relevance to the topic.
In [45], the authors provided a survey about Web Service QoS prediction via
CF, they categorized these methods in two levels: at the first level, they used the
general categorization as neighborhood, model-based, and hybrid, at the second
level the methods under each general category were further categorized according
to what type of contextual data they incorporated, such as location, time or
other. In addition, they discussed the forefront research issues like adaptability,
credibility, and privacy-preserving.

The work in [7] also provided a survey about QoS Web service prediction
methods, the authors categorized methods into the known general categories:
neighborhood, model-based, and hybrid. A special section was dedicated to time-
aware collaborative methods, where they discussed a set of popular methods in
a nutshell. In [22], the authors provided an overview of the Web service rec-
ommendation system, they differentiated between recommendations and predic-
tions. They also provided explanations of different types of CF, like user-based,
item-based, model-based, personalized, and location-aware.

Another approach that accounts for time in service selection is the time series
forecasting approach. This approach can statistically forecast the QoS values in
the future, famous methods in this type are the Moving Average (MA) method,
AR (Auto Regressive), ARIMA (Auto Regressive Integrated with Moving Aver-
age). However, this approach is not a CF-based approach, since it works for each
individual pair of user-service, so it is out of the scope of this review. Despite
this point, we found that some of the hybrid CF methods utilized the time
series method. In the following study [27] the authors provided a comprehensive
survey about QoS time series modeling and forecasting. They selected a set of
studies and discussed issues like the addressed problem, the proposed approach,
the considered performance measure, and the QoS time series dataset, also they
discussed the insufficiency of these studies.

3 Time-Aware Collaborative Filtering (CF) Methods:
Review

Time-aware CF methods are classified thematically into three categories: time-
aware neighborhood methods, time-aware model-based methods, and time-aware

58 E. Jawabreh and A. Taweel

hybrid methods. This classification of CF corresponds to the different time-
awareness aspects of QoS prediction. The following subsections present the lit-
erature review of the different methods for each.

3.1 Time-Aware Neighbourhood Collaborative Filtering

The methods under this section used the traditional CF computation in both
similarity and prediction measurements, however, to be time-aware methods they
have to capture the dynamic change of QoS similarity over time. The time-aware
similarity can be computed using one of two approaches: first, using the time
decay function as a weighting major for the effectiveness of QoS values, and
second, using the time interval slots approach. Next, we provide more details
about the studies under each approach.

Time Decay Approach. The authors in [8] used an exponential decay function
whose value decreases as the time span between two related QoS increases or
as the time span between the current time and two related QoS increases. They
alleviated the data sparsity problem by using the random walk algorithm, which
discovered the indirect user and service similarities. However, authors in [35]
argued that using non-linear decay functions alone is not sufficient for evaluating
the effectiveness of QoS values, so they designed a hybrid decay function, of both
linear and non-linear. Similarly, the study in [6] has used the exponential time
decay function, but a novel idea is added, which aims to increase weights for QoS
values that seemed to be too small or too large in user similarity calculation.
They also modeled the correlation between user and service locations before
calculating the similarity in order to increase prediction accuracy.

Time Interval Approach. The time interval approach was used with average
similarity computation. This method divides the historical QoS data into time
slots and created a matrix of users and services in each slot. It computes simi-
larity in each time slot and the final value of similarity at the current time is the
average of similarities in all time slots. In a study done in [37], the authors calcu-
lated user and service similarity in a static number of time slots determined by
a variable named d, which was a parameter used to reduce the searching space.
The same authors extended their work and introduced a time and location-
aware method in [38]. Their new method used location-based clusters of users
and services in order to alleviate scalability problems. In [14], the authors tried to
improve the work done in [37]. They used a clustering approach that determined
dynamically the size of time slots instead of being static.

Another work in [39] introduced a novel approach named CluCF. This work
extended the studies [37,38]. The authors alleviated the data sparsity problem.
They converted the sparse user, service, and time tensor into a high-density
user-service matrix, this matrix was converted into userCluster-service matrix
and user-serviceCluster matrix. The clustering was based on location data. In the
end, a hybrid prediction with weighted parameters is computed from both user
and service predictions. In this method, the clusters can be updated when new

Time-Aware QoS Web Service 59

users or services are introduced, however, it had a trade-off between scalability
and prediction accuracy.

Later on, [20,29] improved the final similarity measure by using weighting
functions and this achieved a better improvement over the average similarity
measure used in the aforementioned studies. So first, in [20], a new approach was
used to calculate the service similarity in the historical data. They used CAN-
DECOMP/PARAFAC (CP) tensor decomposition to alleviate the data sparsity
problem, and they assigned weights to global and temporal neighborhood ser-
vices. Second, in [29], the user and service similarities were measured in a set
of time slots, to compute the final similarity, the authors used a weighted decay
function, which emphasized the similarity effect of recent time slots. In addition,
they introduced a novel approach that searched for the most similar user in each
time slot.

3.2 Time-Aware Model-Based Collaborative Filtering

Time-aware model-based methods represent a large number of studies in CF
methods. They depend on training a model with a large set of historical QoS
data. The trained model can be used later for predicting QoS. They are further
classified into three subcategories: latent factors methods, clustering, machine
learning methods, and deep learning methods.

Latent Factors Methods. Latent factors methods are based on the assump-
tion that the user-service matrix can be factorized into low-rank latent factor
matrices, by utilizing these matrices the missing QoS can be predicted. It is worth
noting that all studies in this section used latent factorization, however, some of
them also used traditional CF or clustering in addition to latent factorization.

In the year 2011, Y. Zhang et al. [43] introduced the first time-aware CF
method which was named WSPred. This method created a tensor of three dimen-
sions: user, services, and time. In order to predict missing QoS data, it performed
a tensor factorization that learned the latent factors of users, and services in spe-
cific time intervals. The main contribution of their work was the data used in the
tensor, which was real data that had been collected and used for the first time.
It is known now as WSDREAM dataset2 [46] and it had become a well-known
benchmark in the research community.

Later on, similar work was introduced in [41]. The authors used a Non-
negative Tensor Factorization (NTF) approach. The approach used CANDE-
COMP/PARAFAC (CP) factorization with consideration to the non-negativity
property of QoS data. It decomposed the user, service, and time tensor into three
non-negative latent matrices to get an approximation for the temporal QoS val-
ues. Moreover, the approach was evaluated using their own collected dataset,
which was a tensor of size 343× 5817× 32 user-service-time.

The same authors introduced another work in [40]. They used a triadic fac-
torization approach on a user, service, and time tensor. The novelty in their
approach was providing a mechanism to reduce the memory space needed to

60 E. Jawabreh and A. Taweel

store the sparse data in the high dimensional tensor. To do so, they proposed
two methods: Tucker Decomposition (TD) and the coordinate approach, the
former achieved a remarkable memory space reduction. They evaluated their
approach using a tensor of size 408× 5473× 56 user-service-time.

One of the main limitations in studies [40,41,43] was making predictions
offline, which means once the models are trained, they are unable to deal with
new incoming QoS data. To overcome this limitation, the study in [42] pro-
posed an Incremental Tensor Factorization (ITF) method, the ITF is based on
the incremental approach of Singular Value Decomposition (SVD) and Tucker
Decomposition (TD). The new approach had the ability to update prediction
when new QoS data arrives while preserving the scalability and space efficiency
properties. It was evaluated on a tensor of size: 408 users and 5,473 Web services
at 240 time periods, and it achieved higher accuracy than the offline methods.

In [50], the authors used Adaptive Matrix Factorization (AMF) method that
made QoS prediction for candidate services in run-time service adaptation. A
set of well-designed steps were followed to achieve the requirements of accuracy,
efficiency, and robustness. The method performed matrix factorization for each
time slot, with the ability to learn online and to update its parameters using
adaptive weights as new QoS data arrives or as new users and services come.

In [21], the authors used a hybrid method of both traditional neighborhood
CF and latent factors in order to increase prediction accuracy. In the traditional
neighborhood CF part, they used a service-based similarity measure that distin-
guished between static and temporal QoS attributes. In the latent factor part,
they used CANDECOMP/PARAFAC (CP) decomposition on the user, service,
and time tenor. The final prediction was a weighted addition of the two parts.

In [17], the study used the CP factorization of user-service-time tensor by
applying non-negativity constraint on QoS data. The important contribution of
this study was improving the prediction accuracy by several steps including a
linear bias for both user, service, and time to model the temporal changes in
data, using multiplicative learning rule for parameter optimization, and using of
altering direction method in the training process.

In [34], authors provided an outlier resilient prediction method that used
Cauchy loss for measuring the prediction errors. However, they extended their
method by providing time-aware prediction by using CP factorization approach.
Also, they added the non-negativity constraint on QoS data, which caused them
to use the Multiplicative Updating (MU) algorithm to optimize the parameters.

In [28], the authors modeled the effect of temporal changes on service recom-
mendation at three levels: users, services, and preferences. They used a latent
factor decomposition that had a bias shifting for each one of the mentioned lev-
els. They used the implicit feedback from users, which was collected on their
own dataset. In [16], an adaptive matrix factorization approach was used to
model the interactions between users and services in a specific time slot. The
enhancement, in this approach, was the addition of temporal smoothing of the
prediction, which accounted for the dependency between QoS in adjacent time
slots. In [49], a model named CARP was proposed, the model can be used for

Time-Aware QoS Web Service 61

offline and online predictions. The method used K-means clustering to cluster
the invocation records, where each cluster represented a specific context and
a cluster may contain a set of time slots. In order to alleviate the data spar-
sity problem, they aggregated invocation records from different time slots in the
same cluster. Lastly, a matrix factorization approach was used to predict the
final reliability value.

In order to improve the prediction accuracy, other studies incorporated con-
text data like the location of users and services. Incorporating such context data
to cluster users and services may help in alleviating the data sparsity problem.
Moreover, it can help in improving the final prediction accuracy due to the
implicit correlation between time and location that must be considered when
making predictions. An example of these studies is the study in [36], where the
authors created a tensor of multi-dimensions(user, service, time, location, and
QoS property) and used a tensor decomposition method to predict missing QoS
values. Another study is [4], which created local clusters of users and services
based on location information, it performed a hierarchical tensor decomposition
in two types of tensors: the location-based local tensors and the general global
tensors. Finally, in [19], a unified and generalized approach was contributed. The
approach created a tensor of five dimensions(user, service, time, location, and
QoS property). It used tensor decomposition to predict QoS. The prediction loss
was minimized using iRPROP+ optimization method, which produced accurate
prediction results.

Clustering and Machine Learning Methods. Several studies have used
clustering and machine learning approaches in QoS prediction. Clustering is
usually used as a data pre-processing step to alleviate the scalability and data
sparsity problems. It is not sufficient alone to perform QoS prediction, so other
methods like linear regression and QoS averaging are merged with the approaches
in this section. Below is a summary of these studies.

In [24], a method named CLUS was proposed, it predicted reliability attribute
for ongoing services. The method performed a K-means clustering of invocation
records into three steps: environmental variable (network load) clustering, user-
specific clustering, and service-specific clustering. The final prediction was done
by cluster-based computations that used the averaging of the reliability values.
In addition, the authors used a linear regression model for making predication.

In [31], the authors provided a novel method that first predicted the QoS
at the current time by calculating the average of the historical QoS data in a
pre-determined time interval, then a K-means clustering approach was used to
make clusters of similar users and services. The authors used the average value of
the resulting clusters to make user and service-based predictions, lastly, a linear
weighted addition of the two predictions was used.

In [11], the authors proposed a method of two steps: first, it filled in miss-
ing QoS values in the historical QoS time slots. This was done by employing
clustering to compute user and service similarity, the missing QoS was then cal-
culated by averaging the weighted similarity for both users and services. Second,

62 E. Jawabreh and A. Taweel

it predicted QoS in the current time slot by using the averaging of the calculated
historical QoS data.

The method in [2] generated temporal patterns that represented a series of
user invocations for each service, after smoothing the pattern, a clustering app-
roach was used to cluster the generated temporal patterns. The final prediction
of missing QoS was done using a polynomial fitting function.

In [30], a novel approach called lasso was proposed, this method treats the
QoS as a general regression problem. It used lasso regularization to overcome
the sparsity of the QoS data. In addition, it used the location of users and
services to improve prediction accuracy. This model also can accommodate newly
incoming QoS and provide up-to-date predictions. In [12], a Weighted Support
Vector Machine (WSVM) was used. This approach treated the problem of QoS
prediction as a linear regression problem but in a high dimensional space. It used
an exponential weighting function to give high weights for recent data. A sliding
window approach was used to generate data for training.

Deep Learning Methods. To distinguish from traditional machine learning
methods, this section describes methods that used deep learning approaches,
including neural networks and their derivations.

In [33], the authors proposed a novel method called PLMF. The method
improved the prediction accuracy by employing Long Short-Term Memory
(LSTM), which is a type of Recurrent Neural Network (RNN). It performed
online learning and continuously trained with newly coming QoS data by using
a moving sliding window. The model used matrix factorization, where the latent
factors of both users and services were learned using a personalized LSTM.

The study in [32], proposed a method that used a matrix called QI, which was
generated from integrating invocation records with QoS observation matrix. By
using matrix factorization, the method captured the user preferences and service
features matrices. An LSTM was used to predict the QoS values at each time
slice of 64 time intervals, from which, the top N Web services were recommended
to the user.

Despite that LSTM has the ability to model long-term dependency between
QoS data, it has the problem of vanishing gradient, which may stop the learning
process in the neural network. In order to overcome this limitation, the study
in [47] proposed a method that used a Projected Factorization Machine (PFM)
and Gated Recurrent Unit (GRU). The PFM was used to capture the non-
linear interaction in a user, service, and time tensor, and the GRU was used to
model the long-term dependency between sequential historical QoS records. A
combination of the two predictions was adopted.

A similar method was proposed in [44] which used Generalized Tensor Fac-
torization (GTF) to model the static relationship between user, services, and
time. Indeed, it used a Personalized Recurrent Gated Unit (PRGU) to model
the long-term dependency. A maximum activation function was used to combine
the two predictions.

Time-Aware QoS Web Service 63

Other studies utilized the ability of deep learning in inferring the complex
relationships between different input features, they used neural networks to
model the correlation between time and location as two important context data
in the prediction. In the study [48] two methods named STCA-1 and STCA-2
were proposed. In these methods, the spatial and temporal features of services
and users were extracted and entered into hierarchical neural networks. The net-
works were composed of multiple important layers, for example, an interaction
layer was used to identify the first and second-order features. Attention layers
were used to assign more weights to spatial features which made this model more
interpretable than other models.

In [13], a method named QSPC was introduced. It utilized two inputs: the
request context and the temporal information. These inputs were fed to a multi-
layers neural network. One of the important layers in this network was the LSTM
layer, which captured the temporal information into a set of service requests
using a static time window. The final output consisted of the prediction of mul-
tiple QoS attributes, in their case, response time and throughput. In [15], another
method MtforSRec was proposed which accounted for static and dynamic QoS
data. It used a factorization machine to model the static feature of QoS and a
bi-directional LSTM to model the dynamic features. A softmax layer was used
to give the final recommendations from the combined predictions.

In [51], a method named DeepTSQP was proposed. It integrated features
computed from the traditional similarity measures with binary features. For
QoS prediction, it used the GRU model which helped in modeling the temporal
dependency and in mining the implicit features in user-service interactions. This
method achieved good prediction accuracy compared with the methods covered
in this review.

3.3 Time-Aware Hybrid Collaborative Filtering Methods

A number of recent studies combined the CF methods with other methods, such
as time series models and their derivations. Usually, this hybridization is done
to improve prediction accuracy, these studies can be summarized as follows.

In [9], the authors proposed a hybrid method that combined ARIMA model
and traditional CF. ARIMA was used to generate time series for each Web
service, however, ARIMA can’t correct itself timely by taking new observations
as feedback. To overcome this limitation, KALMAN filtering was used. The
authors employed CF to capture user side effects by using user-based similarity.
Lastly, they added two predictions for the final output.

In [5], a method was presented that also combined CF with ARIMA. The
method first applied traditional CF to predict missing QoS for the past and
current Point In Time(PIT). This method used two types of user similarities:
global similarity with attenuation function, and user invocation similarity with
edit distance measure. In the second step of prediction, ARIMA method was used
to forecast QoS for the future PIT. The final Web services recommendation was
done using Multi-Criteria Decision Making (MCDM).

64 E. Jawabreh and A. Taweel

In [18], the authors proposed a method that combined time series analysis
with cloud model theory based on the CF approach to predict unknown QoS.
The QoS data was transformed into time series that represented different cloud
models for different time periods. The similarity between models was measured
using two novel methods namely, orientation and dimension similarity, which
improved the final similarity computation. This method also used weights for
every period using the fuzzy analytic hierarchy method.

4 Research Challenges and Directions

As we stated earlier, incorporating invocation time in QoS prediction for Web
services is a crucial issue that must be considered in order to provide an accurate
prediction. However, several challenges face researchers when they create time-
aware prediction methods, which can be summarized in the following points:

Data Sparsity. In reality, a user usually invokes a limited number of ser-
vices, so the QoS values of the un-invoked services remain unknown forming
what is called the data sparsity problem. This problem becomes more critical
when building time-aware methods since it will occur in multi-time slots during
user-service interactions. Several studies, in the literature, came up with sev-
eral sparse-tolerant solutions such as using random walk algorithm [8], using
data aggregation [49], or using clustering [39]. However, this challenge is still
unsolved and there is room for more innovative ideas to mitigate it.

Deficiency in Incorporating other Context Data Correctly. Time is one
of the factors that affect prediction accuracy, however, other contextual factors
such as the location of users or services, and environmental factors also play a
role in prediction accuracy. The important point here is the understanding of
the correlation between the time factor and other factors. This is considered
a kind of context reasoning that can be inferred by observing and analyzing
the historical QoS values in the datasets. Several studies’ attempts can help in
investigating datasets, on this issue, such as [46] and [26]. In fact, models must
be built based on observations and evidence that would interpret context data
correlation. This will help in generating true context-aware models that have
high prediction accuracy.

The Deficiency in Providing Up-to-Date Predictions. It is very impor-
tant for time-aware to be updated continuously as new QoS data is coming. The
majority of methods discussed in this review are offline methods (i.e. all QoS
data are collected before the training phase). The accuracy of the offline meth-
ods deteriorates as time advances since they ignore new QoS observations that
may carry changes in users, service similarities, or changes in context. Another
important point, here, is that in a dynamic environment, the number of users
and services also change over time. In reality, new users or services may appear,

Time-Aware QoS Web Service 65

or current users and services may be disconnected. However, to address this chal-
lenge two solutions exist: first re-training the offline model periodically,
re-training is required to accommodate new real-time QoS observations and new
users or services. The limitation of this solution is the expensive time spent in
re-training and testing the models as in [24,39,49]. Second building adaptive
online models, these models can adapt to changes timely and can provide accu-
rate up-to-date predictions. The premise of these models is that no need to train
the whole model, however, there are limitations to this solution, for example,
in online clustering models, there is always a trade-off between accuracy and
scalability. Also, the online latent factor and deep learning models need spe-
cial techniques that use moving sliding window and Adam or SGD optimizer to
enable the online incremental training [13,33]. However, this incremental train-
ing is a modern trend that needs further exploration of many issues such as
computational complexity, resource consumption, stability, and maintainability.

Optional Research Directions. There are several research directions that
researchers may work on in order to increase the accuracy of time-aware methods,
from these we mention the following:

Creating Generalised Methods. Most of the research methods attempted
to increase their accuracy with respect to a limited number of known datasets
commonly used in the experiments. However, this may result in creating data-
biased methods which produce inaccurate results when they are evaluated on
large-scale datasets [3]. Hence, there is room for enhancements here, for example:
testing these methods using other different real datasets, applying them in real
environments in the industry, or integrating them with real applications that
need QoS prediction.

Creating Unified Methods. The majority of the current methods incorpo-
rated one or two contextual data, like being location-aware or time-aware, or
both. The more contextual data used by the prediction method the higher accu-
racy it provides [23]. To this end, some methods are oriented toward building a
unified framework, which can be extended to include new contextual data with-
out changing the model’s internal structure. In fact, this will release researchers
from updating or creating models to support new types of contextual data. In
these models, contextual data, like service semantic or load, environmental con-
ditions, user-specific context, etc. can be combined into one unified model. In
addition, these unified models may be extended to support multi-QoS factor
predictions, such as predicting response time, throughput, and reliability at the
same time, which is expected to increase prediction accuracy [19].

Creating New Datasets. The majority of studies in this review utilized the
WSDREAM dataset [46]. Although this dataset is a real dataset, it has several
limitations. First, the used Web services are SOAP-based, so it would be helpful

66 E. Jawabreh and A. Taweel

to include other recent types of Web service, such as Restful API, providing
other types may bring other research challenges in QoS prediction for cloud,
mobile, and IoT fields. Second, the size of this dataset is considered small, so
creating a larger dataset is an important need to keep up with the huge increase
in the number of Web services in the real world. Third, this dataset records QoS
values such as response time and throughput independently in different datasets,
this forms a limitation to research that attempt to conduct multi-predictions.
Including QoS attributes in a synchronous manner will bring about new research
issues.

Performing Empirical Studies. Performing empirical studies in the field of
time-aware CF methods is considered an important need. However, until the time
of writing this review, there are no empirical studies in this field. In fact, most
of the studies, in this review, have deficiencies in selecting the baseline methods
for comparison, they may compare their methods with non-time-aware methods
or with a small number of time-aware methods. So an empirical study is needed
to provide a clear picture of the performance of these methods at computational
and prediction accuracy levels. Moreover, most of the studies, in this review, dis-
cussed the accuracy of their approach without reporting any information about
their computational complexity. Researchers who are interested in this direc-
tion can benefit from empirical studies that have been conducted in the time
series field, like [25], where the authors compared (23) methods and proved that
Genetic Programming (GP) had better accuracy than ARIMA. Similarly, [10]
compared time series methods with some machine learning methods. Another
less comprehensive one is in [1] where authors compared less complicated time
series methods. However, for CF, one may compare several well-known deep
learning methods or several online methods, or any other combinations. Surely,
this comparison will help in selecting the right method either in academic or
industrial fields.

5 Conclusion

In this paper, we performed a comprehensive review of time-aware Web ser-
vice QoS prediction for CF methods. We identified a total of forty (40) studies
from four known relevant digital libraries: IEEExplore, Springer, ScienceDirect,
and ACM. We provided a thematic classification of these reviews into 1)time-
aware neighborhood CF 2) time-aware model-based CF and 3) time-aware hybrid
approaches. We thoroughly analyzed the reviews under each classification and
we identified research challenges. We found a number of key outstanding research
challenges including data sparsity, lack of study of some important service pre-
diction context data, and lack of providing up-to-date service predictions.

A number of limitations of these approaches have been identified, including
their limited ability to provide updated predictions, expensive computation on
re-training for offline methods, limited details on computational complexity, lim-
ited interpretability of results, especially for deep learning methods, a limited

Time-Aware QoS Web Service 67

study of service and user context and QoS factors, and so forth. The review also
suggested a number of potential research directions that need to be explored to
address some of the outstanding research challenges. This review may provide a
thorough guide for researchers in this field.

References

1. Cavallo, B., Di Penta, M., Canfora, G.: An empirical comparison of methods to
support qos-aware service selection. In: Proceedings of the 2nd International Work-
shop on Principles of Engineering Service-Oriented Systems, pp. 64–70 (2010)

2. Chen, L., Ying, H., Qiu, Q., Wu, J., Dong, H., Bouguettaya, A.: Temporal Pattern
Based QoS Prediction. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou,
R., Zhang, Y. (eds.) Web Information Systems Engineering – WISE 2016, pp.
223–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48743-4_18

3. Chen, Z., Sun, Y., You, D., Li, F., Shen, L.: An accurate and efficient web service
QoS prediction model with wide-range awareness. Futur. Gener. Comput. Syst.
109, 275–292 (2020)

4. Cheng, T., Wen, J., Xiong, Q., Zeng, J., Zhou, W., Cai, X.: Personalized web service
recommendation based on QoS prediction and hierarchical tensor decomposition.
IEEE Access 7, 62221–62230 (2019)

5. Ding, S., Li, Y., Wu, D., Zhang, Y., Yang, S.: Time-aware cloud service recommen-
dation using similarity-enhanced collaborative filtering and Arima model. Decis.
Support Syst. 107, 103–115 (2018)

6. Fan, X., Hu, Y., Zheng, Z., Wang, Y., Brézillon, P., Chen, W.: CASR-TSE: context-
aware web services recommendation for modeling weighted temporal-spatial effec-
tiveness. IEEE Trans. Serv. Comput. 14(1), 58–70 (2017)

7. Ghafouri, S.H., Hashemi, S.M., Hung, P.C.: A survey on web service QoS prediction
methods. IEEE Transactions on Services Comput. 15(4), 2439–2454 (2020)

8. Hu, Y., Peng, Q., Hu, X., Yang, R.: Time aware and data sparsity tolerant web
service recommendation based on improved collaborative filtering. IEEE Trans.
Serv. Comput. 8(5), 782–794 (2014)

9. Hu, Y., Peng, Q., Hu, X., Yang, R.: Web service recommendation based on time
series forecasting and collaborative filtering. In: 2015 IEEE International Confer-
ence on Web Services, pp. 233–240. IEEE (2015)

10. Hussain, W., Hussain, F.K., Saberi, M., Hussain, O.K., Chang, E.: Comparing time
series with machine learning-based prediction approaches for violation management
in cloud SLAs. Futur. Gener. Comput. Syst. 89, 464–477 (2018)

11. Jin, Y., Guo, W., Zhang, Y.: A time-aware dynamic service quality prediction
approach for services. Tsinghua Sci. Technol. 25(2), 227–238 (2019)

12. Kai, D., Bin, G., Kuang, L.: A time-aware weighted-SVM model for web service
QoS prediction. In: Wang, S., Zhou, A. (eds.) CollaborateCom 2016. LNICST,
vol. 201, pp. 302–311. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59288-6_27

13. Li, B., Ye, C., Yu, X., Zhou, H., Huang, C.: Qos prediction based on temporal
information and request context. SOCA 15(3), 231–244 (2021)

14. Li, J., Wang, J., Sun, Q., Zhou, A.: Temporal influences-aware collaborative filter-
ing for qos-based service recommendation. In: 2017 IEEE International Conference
on Services Computing (SCC), pp. 471–474. IEEE (2017)

https://doi.org/10.1007/978-3-319-48743-4_18
https://doi.org/10.1007/978-3-319-59288-6_27
https://doi.org/10.1007/978-3-319-59288-6_27

68 E. Jawabreh and A. Taweel

15. Li, M., Lu, Q., Zhang, M., Liang, X.: A multi-task service recommendation model
considering dynamic and static QoS. In: 2019 IEEE International Conference on
Parallel & Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pp. 760–767. IEEE (2019)

16. Li, S., Wen, J., Luo, F., Ranzi, G.: Time-aware QoS prediction for cloud service rec-
ommendation based on matrix factorization. IEEE Access 6, 77716–77724 (2018)

17. Luo, X., Wu, H., Yuan, H., Zhou, M.: Temporal pattern-aware qos prediction via
biased non-negative latent factorization of tensors. IEEE transactions on cyber-
netics 50(5), 1798–1809 (2019)

18. Ma, H., Zhu, H., Hu, Z., Tang, W., Dong, P.: Multi-valued collaborative QoS
prediction for cloud service via time series analysis. Futur. Gener. Comput. Syst.
68, 275–288 (2017)

19. Ma, Y., Wang, S., Yang, F., Chang, R.N.: Predicting qos values via multi-
dimensional qos data for web service recommendations. In: 2015 IEEE Interna-
tional Conference on Web Services, pp. 249–256. IEEE (2015)

20. Meng, S., et al.: Temporal-sparsity aware service recommendation method via
hybrid collaborative filtering techniques. In: Pahl, C., Vukovic, M., Yin, J., Yu,
Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 421–429. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03596-9_30

21. Meng, S., et al.: A temporal-aware hybrid collaborative recommendation method
for cloud service. In: 2016 IEEE International Conference on Web Services (ICWS),
pp. 252–259. IEEE (2016)

22. Puri, A.S., Bhonsle, M.: A survey of web service recommendation techniques based
on QoS values. International Journal (2015)

23. Shen, L., Pan, M., Liu, L., You, D., Li, F., Chen, Z.: Contexts enhance accuracy: on
modeling context aware deep factorization machine for web API QoS prediction.
IEEE Access 8, 165551–165569 (2020)

24. Silic, M., Delac, G., Srbljic, S.: Prediction of atomic web services reliability for
QoS-aware recommendation. IEEE Trans. Serv. Comput. 8(3), 425–438 (2014)

25. Syu, Y., Kuo, J.Y., Fanjiang, Y.Y.: Time series forecasting for dynamic quality of
web services: an empirical study. J. Syst. Softw. 134, 279–303 (2017)

26. Syu, Y., Wang, C.M.: An empirical investigation of real-world QoS of web services.
In: International Conference on Services Computing, pp. 48–65 (2019)

27. Syu, Y., Wang, C.M.: QoS time series modeling and forecasting for web services:
a comprehensive survey. IEEE Trans. Netw. Serv. Manage. 18(1), 926–944 (2021)

28. Tian, G., Wang, J., He, K., Hung, P.C., Sun, C.: Time-aware web service recom-
mendations using implicit feedback. In: 2014 IEEE International Conference on
Web Services, pp. 273–280. IEEE (2014)

29. Tong, E., Niu, W., Liu, J.: A missing qos prediction approach via time-aware
collaborative filtering. IEEE Trans. Services Comput. 15(6), 3115–3128 (2021)

30. Wang, X., Zhu, J., Zheng, Z., Song, W., Shen, Y., Lyu, M.R.: A spatial-SQos
prediction approach for time-aware web service recommendation. ACM Trans. Web
(TWEB) 10(1), 1–25 (2016)

31. Wu, C., Qiu, W., Wang, X., Zheng, Z., Yang, X.: Time-aware and sparsity-tolerant
QoS prediction based on collaborative filtering. In: 2016 IEEE International Con-
ference on Web Services (ICWS), pp. 637–640. IEEE (2016)

32. Wu, X., Fan, Y., Zhang, J., Lin, H., Zhang, J.: QF-RNN: Qi-matrix factorization
based RNN for time-aware service recommendation. In: 2019 IEEE International
Conference on Services Computing (SCC), pp. 202–209. IEEE (2019)

https://doi.org/10.1007/978-3-030-03596-9_30

Time-Aware QoS Web Service 69

33. Xiong, R., Wang, J., Li, Z., Li, B., Hung, P.C.: Personalized LSTM based matrix
factorization for online QoS prediction. In: 2018 IEEE International Conference on
Web Services (ICWS), pp. 34–41. IEEE (2018)

34. Ye, F., Lin, Z., Chen, C., Zheng, Z., Huang, H.: Outlier-resilient web service QoS
prediction. In: Proceedings of the Web Conference 2021, pp. 3099–3110 (2021)

35. Yin, G., Cui, X., Dong, H., Dong, Y.: Web service evaluation method based on time-
aware collaborative filtering. In: Yin, H., et al. (eds.) Intelligent Data Engineering
and Automated Learning – IDEAL 2013, pp. 76–84. Springe, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41278-3_10

36. You, M., Xin, X., Shangguang, W., Jinglin, L., Qibo, S., Fangchun, Y.: QoS eval-
uation for web service recommendation. China Commun. 12(4), 151–160 (2015)

37. Yu, C., Huang, L.: Time-aware collaborative filtering for QoS-based service recom-
mendation. In: 2014 IEEE International Conference on Web Services, pp. 265–272.
IEEE (2014)

38. Yu, C., Huang, L.: A web service QoS prediction approach based on time-and
location-aware collaborative filtering. SOCA 10(2), 135–149 (2016)

39. Yu, C., Huang, L.: Clucf: a clustering CF algorithm to address data sparsity prob-
lem. SOCA 11(1), 33–45 (2017)

40. Zhang, W., Sun, H., Liu, X., Guo, X.: Incorporating invocation time in predicting
web service QoS via triadic factorization. In: 2014 IEEE International Conference
on Web Services, pp. 145–152. IEEE (2014)

41. Zhang, W., Sun, H., Liu, X., Guo, X.: Temporal QoS-aware web service recom-
mendation via non-negative tensor factorization. In: Proceedings of the 23rd Inter-
national Conference on World wide web, pp. 585–596 (2014)

42. Zhang, W., Sun, H., Liu, X., et al.: An incremental tensor factorization approach
for web service recommendation. In: 2014 IEEE International Conference on Data
Mining Workshop, pp. 346–351. IEEE (2014)

43. Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: A time-aware personalized qos predic-
tion framework for web services. In: 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, pp. 210–219. IEEE (2011)

44. Zhang, Y., Yin, C., Lu, Z., Yan, D., Qiu, M., Tang, Q.: Recurrent tensor factor-
ization for time-aware service recommendation. Appl. Soft Comput. 85, 105762
(2019)

45. Zheng, Z., Xiaoli, L., Tang, M., Xie, F., Lyu, M.R.: Web service QoS prediction
via collaborative filtering: a survey. IEEE Trans. Serv. Comput. 15(4), 2455–2472
(2020)

46. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services.
IEEE Trans. Serv. Comput. 7(1), 32–39 (2012)

47. Zhou, J., Guo, X., Yin, C.: Recurrent factorization machine with self-attention for
time-aware service recommendation. In: 2020 6th International Conference on Big
Data Computing and Communications (BIGCOM), pp. 189–197. IEEE (2020)

48. Zhou, Q., Wu, H., Yue, K., Hsu, C.H.: Spatio-temporal context-aware collaborative
QoS prediction. Futur. Gener. Comput. Syst. 100, 46–57 (2019)

49. Zhu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Carp: context-aware reliability
prediction of black-box web services. In: 2017 IEEE International Conference on
Web Services (ICWS), pp. 17–24. IEEE (2017)

50. Zhu, J., He, P., Zheng, Z., Lyu, M.R.: Online QoS prediction for runtime service
adaptation via adaptive matrix factorization. IEEE Trans. Parallel Distrib. Syst.
28(10), 2911–2924 (2017)

51. Zou, G., et al.: Deeptsqp: temporal-aware service QoS prediction via deep neural
network and feature integration. Knowl.-Based Syst. 241, 108062 (2022)

https://doi.org/10.1007/978-3-642-41278-3_10

Enhanced Time-Aware Collaborative
Filtering for QoS Web Service Prediction

Ezdehar Jawabreh1,2(B) and Adel Taweel1

1 Department of Computer Science, Birzeit University, Birzeit, Palestine
{eajawabreh,ataweel}@birzeit.edu

2 Palestine Polytechnic University, Hebron, Palestine
ezdehar@ppu.edu

Abstract. Predicting Quality of Service (QoS) is an essential task in
Service Oriented Computing (SOC). In service selection, choosing the
right services is a crucial step to achieve high system stability and user
satisfaction. Considerable research has been conducted in the last decade
to develop accurate prediction methods. Among these are the time-
aware Collaborative Filtering (CF) methods, which utilize the QoS val-
ues recorded across multiple time periods (slices). However, they suffer
from low accuracy due to adopting inaccurate measures, such as aver-
aging old collected QoS or averaging user (or service) similarity values.
In this paper, we propose a time-aware method (ETACF) that uses an
exponential time-decay function for quantifying the effectiveness of time
slices according to their temporal recency. Experiments were conducted
in order to evaluate the accuracy of the proposed method. Results show
that the developed method achieves a significant improvement in pre-
diction accuracy (decreased NMAE by 9.8%) when compared with the
state-of-art methods.

Keywords: Web service · QoS · time-aware prediction · Collaborative
Filtering (CF)

1 Introduction

Nowadays, software development witnesses a transition from traditional software
development to one that heavily utilizes components and services distributed
over the Internet. This led to the emergence of the Service Oriented Architecture
(SOA), in which services are widely used in many fields, such as Web develop-
ment, cloud computing, IoT, and many others. However, the increasing number
of available services over the Internet makes choosing the optimal service a sig-
nificant challenge. A selected service should satisfy both user’s functional and
non-functional requirements. The latter is known as Quality of Service (QoS),
and it has become a distinguished feature among many equally functional can-
didate services. Usually, some QoS attributes are considered service provider
dependent, such as cost, while others are more dependent on the user and net-
work environment [3,19], such as response time and throughput attributes.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 70–83, 2023.
https://doi.org/10.1007/978-3-031-46235-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_5&domain=pdf
http://orcid.org/0000-0002-1781-820X
http://orcid.org/0000-0003-0240-9857
https://doi.org/10.1007/978-3-031-46235-1_5

Enhanced Time-Aware Collaborative Filtering 71

Obtaining accurate values for user-dependent QoS values is a critical task in
the service selection problem. Several traditional ways were used to obtain these
values, such as using the QoS values announced by the service provider in the
Service Level Agreement(SLA), but this is considered inaccurate since the QoS
values may change over time. Another way is testing candidate services manually
by users to evaluate their QoS values, this approach is also not feasible, time-
consuming, and expensive. As a result, a number of QoS prediction methods have
been proposed to provide a personalized prediction. The Collaborative Filtering
(CF) method is one that is mostly used in this field.

The premise of CF method is to employ QoS values obtained from collab-
orators (users), when they invoke services, to make predictions for others. The
similarity between users or services is an essential factor in this method, since
users who gained similar values in the past are likely to get similar values in
the future [19]. However, several problems faced CF prediction methods, such
as scalability, data sparsity, and the more important one that is tackled in this
paper, is the dynamics in user characteristics and network environments over
time. To mitigate these problems, methods have started optimizing similarity
computations by utilizing contextual information, such as the location of the
users and services in the location-aware methods [16], and the invocation time
in the time-aware methods [5,11].

Fig. 1. User-Service QoS matrix (u: user, s: service, t: time)

Time-aware CF methods utilize large amounts of historical data collected at dif-
ferent time slices (periods). Figure 1 shows a matrix of QoS values obtained when
users invoked a set of services at different temporal slices. The numbers in the
matrix could represent any QoS attribute, such as response time or throughput.
Accounting for temporal changes in user and service similarity has a good impact
on producing an accurate prediction. However, many methods produced predic-
tion of QoS by averaging the past values taken from all time slices [10,11]. Other
methods have, also, used the averaging method for calculating time-aware sim-
ilarity [14,15]. Using these methods may produce inaccurate results, since they

72 E. Jawabreh and A. Taweel

assign an equal degree of importance for each QoS regardless of their tempo-
ral order. However, for some QoS attributes, such as response time, the latest
values will reflect the true status of the system and hence should contribute
more to predicting the QoS of concern. Indeed, several recent studies [4,13,19]
have proved empirically that utilizing recent values significantly increased the
accuracy of the prediction.

Table 1 lists a simple toy example to illustrate the importance of this idea,
which shows the similarity measures for user U1 with respect to two other users:
U2, and U3 at different time slices t1, t2, t3 and t4, where t1 represents the recent
time slice. These similarities are continuous numbers in the range [−1,1], that
Pearson Correlation Coefficient (PCC) may be used to compute them, where
larger values mean greater similarity. Indeed, they could represent similarities in
response time QoS or any other attribute. If the average similarity measure is
used to compute the similarity of U1 with respect to these two users then this
will produce an equal similarity value of 0.51, which is considered an inaccurate
similarity indication in our case. As shown, in the recent slices, U3 became less
similar to U1 than U2, this could happen for example due to a change in U3
location or a change in the network environment. Thus, this dynamic change in
the surrounding environment must be reflected in our similarity computation in
order to provide accurate QoS prediction.

In this paper, we propose a time-aware prediction method that determines
the effectiveness of QoS values according to their temporal order. Our method
utilizes the recent QoS in a more efficient way to get more accurate similarity
measures. Specifically, we propose a time-aware collaborative filtering method
that uses an optimized time decay function for computing user and service simi-
larities over different time periods. Several experiments have been conducted to
evaluate the accuracy of our method. Results show that the proposed method
outperforms the state-of-art CF methods.

Table 1. PCC Similarity for User U1 with respect to U2 and U3

Time Slice Sim(U2) Sim(U3)

t1 0.8 0.2

t2 0.75 0.3

t3 0.3 0.7

t4 0.2 0.85

The rest of this paper is organized as follows: Sect. 2 presents the related work,
and Sect. 3 shows the details of the proposed method with the formal mathe-
matical formulation. Section 4 describes the conducted experiments to validate
the proposed method and the results of the experiments. Section 5 discusses and
concludes our work.

Enhanced Time-Aware Collaborative Filtering 73

2 Related Work

CF is one of the effective methods that is widely adopted in research to make
QoS predictions. Mainly, it is divided into two types: model-based and memory-
based [3,19]. The model-based approach builds a model from the historically
collected QoS data, which is used later to predict missing QoS values. How-
ever, the memory-based approach, or sometimes it is called the neighborhood
approach, utilizes the information of similar users or services in making QoS
predictions. The memory-based approach can be divided into three types: user-
based [9], item-based [8], and a hybrid of the two types [18]. Our investigated
approach in this paper is a hybrid memory-based approach.

In [18], the authors proposed a hybrid method that used Pearson Correla-
tion Coefficient (PCC) in making two predictions, the first one is a user-based
prediction (UPCC) and the other is Item (Service) IPCC prediction [8]. The
method is known as WSRec. It used confidence weights to balance between the
two predictions, the final prediction is a linear addition of the weighted pre-
dictions. Usually, this hybrid prediction achieved better results than employing
UPCC or IPCC methods separately. Another hybrid method, called RACF, was
introduced in [12], in which authors proposed a ratio-based approach to com-
pute both users and services similarity; they also suggested a novel item-based
method for making a final prediction. To improve the accuracy of QoS prediction,
several studies have also integrated contextual information. In [1], the authors
proposed a hybrid method called RegionKNN. The method employed, for the
first time, the geographical location of users and services in similarity compu-
tation. In [7], authors proposed a location-based Matrix Factorization approach
that utilized the similarities in user and service locations to eliminate the effect
of the cold start problem. In another work, [15] the authors created location-
based clusters of users and services in order to alleviate the scalability problem
of the memory-based approach.

Time is another important contextual factor that is widely employed in the
research for improving QoS prediction. WSPred [17] is known to be the first
time aware CF method, proposed by Y. Zhang et al, in the year 2011. This
method performed factorization of a user, services, and time tensor in order to
predict missing QoS data over specific time intervals. However, in memory-based
approaches, time is integrated using different techniques at similarity and predic-
tion levels. In [4], authors used the time decay technique to model the temporal
effect of service invocation’s time in computing user (or service) similarity. They
stated two principles for QoS contribution in similarity and prediction computa-
tions. Their principles utilized the QoS values that have a close timestamp, and
the QoS values that were obtained recently.

A similar usage of time decay is done in [2], where authors model tempo-
ral similarity changes along with a weighted effect for similar ratings. Other
approaches used the time-interval technique in similarity computation. For exam-
ple in [10], the authors proposed a method that combined the average value of
QoS computed from a set of historical time intervals with weighted time-aware
similarity; their approach has achieved a higher prediction accuracy compared

74 E. Jawabreh and A. Taweel

with other time-aware methods. In [14], the authors proposed a method, called
TACF, that computed an average time-aware similarity of a set of a predeter-
mined number of historical time intervals. Actually, this approach suffers from
limitations, such as the oscillation in prediction accuracy as the number of time
intervals is increased and another limitation represented in the static setting of
the parameter that determines the number of time intervals to be considered for
making the prediction. An extension to this work is done in [6], where authors
used a clustering approach to dynamically determine the number of time inter-
vals.

In this paper, we introduce a new approach that combines the time-interval
technique for similarity computation with the time decay function for quanti-
fying the temporal effectiveness of the computed similarity. Our approach is an
enhanced version of TACF approach, thus named ETACF, in which we elim-
inate the effect of bad prediction that occurred due to the use of the average
similarity measure. As we stated before, the average similarity is considered an
inaccurate measure for computing time-aware similarity, since it does not reflect
the last changes in the real environment. Next, we will explain the details of our
approach.

3 Proposed ETACF Method

This section describes the details of our proposed method, along with a clarifi-
cation of the mathematical formulation that was implemented in each step.

3.1 Notations and Definitions

We define a set of notations and definitions that will be used in the rest of this
paper, as follows.

Notations

– U = {u1, u2 , ... , um } is set of users for web services, ui denotes a user,
where (1 ≤ i ≤ m).

– S = {s1, s2 , ... , sn } is set of web services, sd denotes a service, where
(1 ≤ d ≤ n).

– R(u, s) = {ru,s|u ∈ U, s ∈ S} is user-service matrix, where ru,s represents the
QoS value of the u user when they invoked the s service.

– Tj = {t1, t2, t3,, tj} is a time interval consists of j number of time slices,
and tk denotes a time slice where (1 ≤ k ≤ j)

Definitions

– Target User: a user attempts to invoke a service whose QoS value is currently
missing.

– Target Service: a service that a target user wants to invoke, and its QoS value
is missing for this user.

Enhanced Time-Aware Collaborative Filtering 75

3.2 QoS Model Description

Our approach for QoS prediction builds on the Time-Aware Collaborative Fil-
tering (TACF) algorithm proposed in [14]. The QoS prediction in the TACF
original method is done through three main steps as follows:

– Compute the service similarity between target service s and the other services
at j number of time slices. This step produced a set of most N similar services
to the target one, named TopNS .

– Compute user similarity for the target user by using the TopNS similar ser-
vices computed in the previous step. This step produced a set of most similar
users to the target one, named TopNU .

– Predict the missing QoS for the target user based on TopNU similar users
produced in the previous step.

We will denote our new approach as Enhanced TACF (ETACF), for simplic-
ity. Worth to note that our new approach predicts the QoS in the current time
slice t1 by utilizing a number of historical time slices in the User-Service QoS
matrix. Next, we will introduce a detailed description of each step of the new
proposed algorithm.

Service Similarity Computation. This is a crucial step in any CF prediction
algorithm, which calculates the similarities between the target service and all
other services; different measures can be used to calculate this similarity, one
of the commonly used measures is Pearson Correlation Coefficient (PCC) [18],
which is defined by Eq. 1.

sim(s, f) =
∑

u∈U ′(ru,s − rs)(ru,f − rf)
√∑

u∈U ′(ru,s − rs)2 − √∑
u∈U ′(ru,f − rf)2

(1)

where U ′ represents the set of users who invoked both services s and f , and rs

and rf represent the average QoS value of s and f services invoked by users in
U ′, respectively.

In order to eliminate the effect of services that may have few similar val-
ues with the target service, but are not actually similar, we used a weight for
similarity computation adapted from [18], which is defined by Eq. 2.

w =
2 × |U(s) ∩ U(f)|
|U(s)| + |U(f)| (2)

where |U(s)| and |U(f)| are the number users who invoked services s and f ,
respectively. So the final PCC similarity measure between two services will be
computed by Eq. 3.

sim ′(s, f) = w × sim(s, f) (3)

Time-Aware Service Similarity Using Time Decay Function
The service similarity is computed for a specific number of time slices in the QoS

76 E. Jawabreh and A. Taweel

matrix. Our approach introduces a new contribution that uses an exponential
time decay function to weight the service similarity for each time slice according
to its temporal order. The principle we adopted here is that: recent time slices
should contribute more to prediction. To realize this, we designed an exponential
time decay function, as in Eq. 4.

f(k) = e−α.k (4)

where k denotes the order of the time slice in the time intervals set Tj , such
that recent time slices that have small values for k will have larger effectiveness
in prediction making. Indeed, the decay function has, also, α parameter, which
is a positive time decay constant used to control the speed of decaying in the
assigned weights. Our algorithm treats this constant as a hyperparameter whose
value is tuned experimentally to fit the available QoS values. In Sect. 4, we will
show how its value is selected to produce the best prediction.

By augmenting this time decay function in the calculation, the final time-
aware service similarity in time interval set Tj will be calculated by Eq. 5.

simTj
(s, f) =

∑
tk∈Tj

f(k) × sim ′
tk

(s, f)
∑

tk∈Tj
f(k)

(5)

where sim ′
tk

is the time-aware similarity in time slice tk, such that tk ∈ Tj , and
(1 ≤ k ≤ j). Finally, we select the TopNS similar services to the target. This set
of services will be used in the next step of the algorithm.

User Similarity Computation. User similarity is measured based on the
TopNS similar services computed in the previous step. In the same way, PCC
[9] is used to compute user similarity as defined in Eq. 6.

sim(u, v) =
∑

s∈S ′(ru,s − ru)(rv,s − rv)
√∑

s∈S ′(ru,s − ru)2 − √∑
s∈S ′(rv,s − rv)2

(6)

where S ′ represents the set of services invoked by both users u and v, and ru

and rv represent the average QoS value of u and v users who invoked services in
S ′, respectively.

A weight is assigned to this similarity in order to eliminate the effect of
dissimilar users [18], as in Eq. 7.

w =
2 × |S(u) ∩ S(v)|
|S(u)| + |S(v)| (7)

where |S(u)| and |S(v)| are the number services which invoked by users u and
v, respectively. So the final user similarity is calculated as in Eq. 8.

sim ′(u, v) = w × sim(u, v) (8)

Time-Aware User Similarity Using Time Decay Function
Similarly, we compute the user similarity for a specific number of time slices,

Enhanced Time-Aware Collaborative Filtering 77

and the time decay function is used to give more effectiveness for the recent
time slice, so the final user similarity computed in time interval T is defined in
Eq. 9.

simTj
(u, v) =

∑
tk∈Tj

f(k) × sim ′
tk

(u, v)
∑

tk∈Tj
f(k)

(9)

Where sim ′
tk

is the time-aware similarity in a specific time slice tk, such that
tk ∈ Tj , and (1 ≤ k ≤ j)

Finally, we select the TopNU similar users to the target. This set of users will
be used for making predictions in the next step of the algorithm. Worth to note
here that we apply the positive similarity constraint on TopN to avoid selecting
neighbors with negative similarity values, thus, the goal of this constraint is to
improve the prediction accuracy.

QoS Prediction. After calculating the TopNU similar users, the prediction
for the current value qu,s,t1 that represents QoS value of the target user u on
the target service s is calculated using a weighted sum for every similar user in
TopNU as defined in Eq. 10.

qu,s,t1 =

∑
v∈TopNU

simTj
(u, v) × qv

∑
v∈TopNU

simTj
(u, v)

(10)

4 Evaluation and Results

To evaluate the accuracy of the proposed method, a number of key factors need,
first, to be determined and optimized. Thus, to do so, we conducted a set of
experiments, which then their determined values are used to optimize the pro-
posed method. More specifically, we conducted experiments to answer the fol-
lowing questions:

– What are the optimal weights imposed by the time decay function for best
prediction?

– What is the impact of time decay function on the proposed method (ETACF),
compared to the baseline TACF and other baseline methods?

– What is the impact of time interval parameter Tj on prediction accuracy (i.e.
the impact of the number of time slices used for prediction making)?

– What is the impact of TopN parameter on the prediction accuracy?

4.1 Experiments Setup

To evaluate our method, we used the real-world data set WSDream2 [20]. This
data set contains real values for two QoS attributes, which are response time
and throughput. In this paper, our experiments were run on the Response Time
(RT) data set. Response time data set is a matrix of size: 142 × 4500 × 64

78 E. Jawabreh and A. Taweel

(users × services× timeslices). The details statistics of this data set are shown
in Table 2. Indeed, in our experiments, we randomly removed QoS values to
generate matrices of different data densities. This helps in simulating the real
situation and in proving the validity of our model. Details of parameter set-
tings are shown in Table 3. In each experiment, we randomly chose 100 user-
service pairs that QoS values are missing to make a prediction, the experiments
were repeated multiple times and the average Normalized Mean Absolute Error
(NMAE) is taken as the final results, details of results with different parameter
settings will be shown in Sect. 4.3.

Table 2. Response Time WSDREAM2 dataset

Statistics Values

Num. of Records 30287611

Num. of Service Users 142

Num. of Web Services 4500

Num. of Time Slots 64

Interval of Time Slots 15 min

Mean of Response-Time 3.165 s

Scale of Response Time 0–20 s

Table 3. Parameter’s Setting

Parameter Description Values

MD Density of RT matrix {0.30, 0.20, 0.10}
TopN Top Similar Users(Services) {10, 20, 30, 40, 50}
α Time Decay constant {1, 1.5, 2, 2.5, 3}
Tj Time interval j = {2, 4, 6, 8}

4.2 Evaluation Metrics

Evaluation metrics are used to measure the deviation of the predicted QoS from
the actual one. Different metrics can be used. Equation 11 shows the Mean Abso-
lute Error (MAE) metric [14].

MAE =

∑
u,s,t1

|aru,s,t1 − pru,s,t1 |
N

(11)

where aru,s,t1 denotes actual QoS values of user u on Web service s in the first
time interval t1 and pru,s,t1 denotes the predicted QoS values of Web service

Enhanced Time-Aware Collaborative Filtering 79

s observed by user u also in t1. N denotes the number of predicted values.
The lower value of the MAE, means higher prediction accuracy. Since the QoS
values of Web services in response time data set come from different ranges,
the Normalized Mean Absolute Error (NMAE) metric [14] is considered more
interpretative in this case. NMAE is defined as in Eq. 12.

NMAE =
MAE

∑
u,s,t1

(aru,s,t1)/N
(12)

In this paper, NMAE was adopted as the final metric to measure prediction
accuracy.

4.3 Controlling Time Decay Function Weights

(a) Time Decay with different alpha (b) NMAE for alpha

Fig. 2. Time Decay Function

The time decay function has two important parameters: the temporal param-
eter k. Its value denotes the temporal sequence of the time slices, such that the
older slice will have larger k values. The second parameter is the time constant
alpha (α). This parameter determines the speed of decaying in weights and it
should be adjusted in a way that produces the best accuracy. To this end, we
conducted several experiments. Initially, we tried to figure out how the decaying
will be in the first eight-time slices. Figure 2a shows the resulting time decay
exponential curves for alpha values in the range [1,3] and increment step of 0.5.
From these curves, we can notice that a larger value for α results in faster decay
in weights.

In the next step, we experimentally tested the suggested range for α on
the RT data set and measure NMAE for each value. We adjusted the model
parameters as follows: Tj = T2, TopN = 30, and MD= 30%. Results are shown
in Fig. 2b. We can conclude that when α = 2 we obtained the minimum NMAE.
For this reason, we chose the value of α to be 2. This means that the speed of
decaying in weights is best to be a median one.

80 E. Jawabreh and A. Taweel

4.4 Evaluating Performance of Proposed Method (ETACF) Using
Decay Function

The following baseline methods have been used to evaluate the performance of
our proposed method:

– UPCC (user-based collaborative filtering using PCC) [9]: this method uses
the information of similar users for prediction making.

– IPCC (item-based collaborative filtering using PCC) [8]: this method uses the
information of services for prediction making.

– WSRec [18]: this method is a hybrid one that combines UPCC with IPCC in
prediction making.

– TACF (time-aware collaborative filtering) [14]: this method is the one we
extend in this paper, it is a time-aware method that uses both user and
service similarities in making predictions.

Table 4 shows the NMAE values of our method compared with other baseline
methods. It clearly shows that our new proposed method (ETACF) outperforms
others tested state-of-the-art methods. These experiments were conducted under
different matrix densities in the range [30%,10%] with a decrement step of 10%,
which is done in order to prove the validity and generalizability of our method;
other parameters settings were Tj = T2 and TopN is set to the best value in
each method.

Table 4. NMAE for ETACF and baseline methods

Method Matrix Density

30% 20% 10%

UPCC 0.5622 0.5998 0.6718

IPCC 0.6532 0.6831 0.6939

WSRec 0.5620 0.5984 0.6601

TACF 0.4172 0.5064 0.6394

ETACF 0.4018 0.4856 0.5823

To evaluate the impact of introducing a time decay function compared with the
original TACF method, we conducted another series of experiments at different
time intervals in the range [T2, T8] with an increment step of 2 and MD = 30%.
As Fig. 3 shows, the original TACF has low prediction accuracy and suffers from
oscillations as Tj value is increased, actually. These limitations were mentioned
by the authors of the original method and we noticed them when we imple-
mented their method. However, clearly, we can notice that introducing the time
decay function in our proposed ETACF method had two positive effects in that:
first, it smoothed the oscillations along with the increment of Tj , and second, it
improved the prediction accuracy. So our new method is considered a significant
enhancement to the original method.

Enhanced Time-Aware Collaborative Filtering 81

Fig. 3. Comparison of Performance

4.5 Evaluating Impact of Time Slices

(a) Impact of Parameter Tj (b) Impact of Parameters TopN

Fig. 4. Impact of Parameter Tj and TopN

To evaluate the effect of number of time slices used in QoS prediction, i.e.,
in other words, the effect of the parameter Tj , we conducted a set of experi-
ments with Tj value in the range [T2, T8] with increment of 2. The experiments
were repeated for different values of TopN parameter at MD = 30% as shown
in Fig. 4a. We can notice that in either value of TopN our method achieves a
steadiness in prediction accuracy. The steadiness begins from T = T4, which
is because the time decay function assigns tiny weights to intervals larger than
T4. In fact, this achieved our initial goal in that recent time intervals should
contribute more in the prediction making while the effect of old intervals should
be eliminated to gain more prediction accuracy. So in our case considering a
larger value for parameter Tj will not achieve a considerable difference in the
prediction accuracy due to the weights imposed by the time decay function.

82 E. Jawabreh and A. Taweel

4.6 Evaluating Impact of Users/Services Similarity

To investigate the effectofusers (or services) similarityon theproposedmethod,i.e.,
the impact of TopN parameter, we tested different values of TopN in the range of
[10,50] with increment step 10 and MD = 30%. As shown in Fig. 4b, the minimum
NMAEwasachievedatTopN = 30.Asmall value forTopN will notbringa suitable
number of similar users for making predictions, and a large value will bring fewer
similar users, which will negatively affect the prediction accuracy.

5 Discussion and Conclusion

In the section above, we conducted several experiments to validate the proposed
method. The results proved that our method enhanced the prediction accuracy.
Several parameters such as TopN , Tj , and weights imposed by the time decay
function have to be studied carefully in order to get the best prediction. The
TopN is used to control a number of similar users/services that will contribute to
prediction, at some optimal point, the method will generate the best prediction,
for example, 30 in our case. The Tj parameter determines the number of time
slices to be considered for prediction, it is used to select the recent slices that
will reflect the true status of the system. The weight function is used to quantify
the importance of each time slice. Different scenarios may need different settings
for these parameters.

As a conclusion, we consider time an important factor for inferring valid
contextual information, so relating prediction to time enables CF methods to
capture the dynamic changes in the user (or service) characteristics and in the
network environment. In this paper, we proposed a method that enhanced pre-
diction accuracy compared to state-of-art methods. It combined the time-decay
function with the time-interval approach, which resulted in smoothing predicted
outputs, consequently improving the overall accuracy.

Several experiments were conducted to investigate the effect of different
parameters on the proposed method and to evaluate the performance of our
method. Results show the proposed method (ETACF), achieved better NMAE
than state-of-the-art.

As a future work, the effect of different contextual data, for example, location
of users or services, on prediction accuracy will be investigated in different con-
textual setups. Additionally, other types of time-decay functions, such as linear
or a hybrid of exponential and linear functions, will be investigated.

References

1. Chen, X., Liu, X., Huang, Z., Sun, H.: Regionknn: a scalable hybrid collaborative
filtering algorithm for personalized web service recommendation. In: 2010 IEEE
International Conference on Web Services, pp. 9–16. IEEE (2010)

2. Fan, X., Hu, Y., Zheng, Z., Wang, Y., Brézillon, P., Chen, W.: CASR-TSE: context-
aware web services recommendation for modeling weighted temporal-spatial effec-
tiveness. IEEE Trans. Serv. Comput. 14(1), 58–70 (2017)

Enhanced Time-Aware Collaborative Filtering 83

3. Ghafouri, S.H., Hashemi, S.M., Hung, P.C.: A survey on web service QoS prediction
methods. IEEE Trans. Serv. Comput. 15(4), 2439–2454 (2020)

4. Hu, Y., Peng, Q., Hu, X., Yang, R.: Time aware and data sparsity tolerant web
service recommendation based on improved collaborative filtering. IEEE Trans.
Serv. Comput. 8(5), 782–794 (2014)

5. Hu, Y., Peng, Q., Hu, X., Yang, R.: Web service recommendation based on time
series forecasting and collaborative filtering. In: 2015 IEEE International Confer-
ence on Web Services, pp. 233–240. IEEE (2015)

6. Li, J., Wang, J., Sun, Q., Zhou, A.: Temporal influences-aware collaborative filter-
ing for QoS-based service recommendation. In: 2017 IEEE International Conference
on Services Computing (SCC), pp. 471–474. IEEE (2017)

7. Ryu, D., Lee, K., Baik, J.: Location-based web service QoS prediction via prefer-
ence propagation to address cold start problem. IEEE Trans. Serv. Comput. 14(3),
736–746 (2018)

8. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295 (2001)

9. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized QoS prediction
for web services via collaborative filtering. In: IEEE International Conference on
Web Services (ICWS 2007), pp. 439–446. IEEE (2007)

10. Tong, E., Niu, W., Liu, J.: A missing QoS prediction approach via time-aware
collaborative filtering. IEEE Trans. Serv. Comput. 15(6), 3115–3128 (2021)

11. Wu, C., Qiu, W., Wang, X., Zheng, Z., Yang, X.: Time-aware and sparsity-tolerant
QoS prediction based on collaborative filtering. In: 2016 IEEE International Con-
ference on Web Services (ICWS), pp. 637–640. IEEE (2016)

12. Wu, X., Cheng, B., Chen, J.: Collaborative filtering service recommendation based
on a novel similarity computation method. IEEE Trans. Serv. Comput. 10(3),
352–365 (2015)

13. Xiong, R., Wang, J., Li, Z., Li, B., Hung, P.C.: Personalized LSTM based matrix
factorization for online QoS prediction. In: 2018 IEEE International Conference on
Web Services (ICWS), pp. 34–41. IEEE (2018)

14. Yu, C., Huang, L.: Time-aware collaborative filtering for QoS-based service recom-
mendation. In: 2014 IEEE International Conference on Web Services, pp. 265–272.
IEEE (2014)

15. Yu, C., Huang, L.: A web service QoS prediction approach based on time-and
location-aware collaborative filtering. SOCA 10(2), 135–149 (2016)

16. Yu, C., Huang, L.: CluCF: a clustering CF algorithm to address data sparsity
problem. SOCA 11(1), 33–45 (2017)

17. Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: a time-aware personalized QoS predic-
tion framework for web services. In: 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, pp. 210–219. IEEE (2011)

18. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation
by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2010)

19. Zheng, Z., Xiaoli, L., Tang, M., Xie, F., Lyu, M.R.: Web service QoS prediction
via collaborative filtering: a survey. IEEE Trans. Serv. Comput. 15(4), 2455–2472
(2020)

20. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services.
IEEE Trans. Serv. Comput. 7(1), 32–39 (2012)

Comparison of Performance and Costs of CaaS
and RDBaaS Services

Piotr Karwaczyński1(B), Mariusz Wasielewski1, and Jan Kwiatkowski2

1 Sygnity S.A., Strzegomska 140a, 54-429 Wrocław, Poland
{pkarwaczynski,mwasielewski}@sygnity.pl

2 Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370
Wrocław, Poland

jan.kwiatkowski@pwr.edu.pl

Abstract. Public clouds like AWS, Azure, GCP, and OCI offer a range of ser-
vices includingContainer as a Service (CaaS) andRelationalDatabase as a Service
(RDBaaS). From the perspective of an IT system provider there is a notable lack of
information on the overall performance that can be achieved when using specific
configurations of these interdependent CaaS and RDBaaS services. To address
this issue and avoid incorrect architectural assumptions, it was decided to empiri-
cally evaluate the combined performance offered by CaaS and RDBaaS services,
considering their hardware configurations selected based on a predetermined cost
constraint.

The experiments were conducted in two stages. The first stage was aimed at
narrowing down the set of investigated CaaS and RDBaaS services. Using the
measurements collected in the second stage, a statistical analysis was performed,
comparing the performance achieved in the cloud environments with the per-
formance obtained in the on-premise environment, taking cost constraints into
account.

The experiments conducted for the cloud services provided insights into their
limitations and performance, enabling informed architectural decisions during
the design of complex IT systems. The results of the analysis confirmed that the
performance obtained for the studied combinations of services and their associated
costs significantly varied among the different cloud providers.

Keywords: Cloud Service · CaaS · RDBaaS · Performance · Cost

1 Introduction

Public clouds, such as AWS, Azure, GCP, or OCI, offer a plethora of services. Among
them are services that enable the execution of containers (CaaS, Container as a Service)
and services providing relational databases (RDBaaS, Relational Database as a Service).
Each of these services has a pricing model dependent on various configuration param-
eters, including the allocated hardware resources. From the perspective of IT system
providers, it can be stated that there is a lack of information regarding the performance

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 84–99, 2023.
https://doi.org/10.1007/978-3-031-46235-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_6&domain=pdf
http://orcid.org/0000-0003-3145-0947
https://doi.org/10.1007/978-3-031-46235-1_6

Comparison of Performance and Costs of CaaS and RDBaaS Services 85

that can be collectively achieved for specific configurations of interacting CaaS and
RDBaaS services. Without such information, making architectural decisions during the
design of complex information systems that utilize cloud services, while operating under
a limited budget, is a highly risky endeavor.

To mitigate the risk of making incorrect architectural assumptions, it was decided
to empirically evaluate the combined performance offered by CaaS and RDBaaS ser-
vices, considering hardware configurations (vCPU, RAM) selected based on a prede-
termined cost constraint. The maximum cost of cloud configurations was arbitrarily
set at 70% of the known (estimated) cost of the on-premise environment. The CaaS
services encompassed both Kubernetes-based solutions and proprietary cloud provider
solutions. Among the available RDBaaS services, those providing database systems
based on MSSQL, Oracle, MySQL, and PostgreSQL were selected.

In each CaaS service, the same Docker image containing a test application was
deployed. Upon execution, the application performed several typical, elementary busi-
ness operations and recorded their execution times. Additionally, the cost of using each
environment in which the experiment was conducted was estimated.

The experiments were conducted in two stages. The first stage aimed to preliminarily
narrow down the set of investigated services. In the second stage, based on the results of
repeatedmeasurements, a statistical analysis was performed to compare the performance
achieved in the cloud environments with the performance obtained in the on-premise
environment, taking cost constraints into account.

The conducted experiments provided knowledge about the limitations and perfor-
mance of selected cloud services. The analysis results confirmed that the performance
achieved for the investigated combinations of services and their associated costs sig-
nificantly varied among different cloud providers. It is also worth emphasizing that the
most expensive services did not always prove to be the most efficient.

The study begins with a literature review that focuses on the characterization of cloud
services, specifically in terms of performance and costs. Following this, the objective,
motivation, and research question for the conducted experiments are formulated. In the
subsequent sections the preparation and planning phase are extensively described, the
analysis procedure is detailed, and the execution of the experiments is summarized.
Finally, the results of the statistical analysis are presented along with the discussion,
which is followed by the conclusions drawn from the obtained findings.

2 Related Work

Over the past decade, attempts have been made to comprehensively characterize clouds
and their services, including their performance and usage costs. In particular, a thorough
approach proposed by the Cloud Services Measurement Initiative Consortium, based on
the Service Measurement Index (SMI) [1, 2], can be mentioned. SMI is a structure of
features and associated attributes and measures that can be used for comparing cloud
services. Unfortunately, the consortium suspended its work in 2014, and the initially
promising concept of SMI did not progress to the standardization stage.

A contemporary attempt at a comparative assessment of clouds in terms of perfor-
mance and costs is the Cloud Transparency Platform developed by Cloud Mercato, a

86 P. Karwaczyński et al.

company researching the cloud services market [3]. Among the information provided in
one place, the platform offers primarily performance benchmark results, such as GB5
(single, multi), Sysbench CPU, and iPerf, as well as information on service costs. The
presented information pertains to preconfigured virtual machines (IaaS) offered in cloud
computing and does not encompass PaaS services. Similar approach addressing the
performance of IaaS model is given in SPEC Cloud Benchmark [4].

Another current approach to characterizing IaaS cloud services based on their cost
and responsiveness is the Application Performance and Price Index (APPI) [5, 6].
This index requires assuming certain subjective values that express acceptable levels
of response time and the cost of using a virtual machine from the user’s perspective.

A comprehensive review of publications presenting methods and performance mea-
surement results in the field of cloud computing is [7]. The researchers present method-
ological principles that measurements for cloud environments should adhere to, and sub-
sequently evaluate the quality of measurements carried out by the research community
in the cloud computing domain in relation to these principles. The conclusions presented
in the article regarding the need for and quality of measurements in cloud environments
align with our observations. When designing our own measurement experiments, we
relied on the guidelines provided by the authors.

A non-functional aspect of cloud solutions that must be considered when designing
systems utilizing cloud computing services is the cost of their usage. In practice, deter-
mining “how much it will cost” for implementation in a PaaS or SaaS model proves to
be a non-trivial task. Cost control in cloud utilization remains a significant challenge for
its users [8].

The aspect of cost calculation in cloud usage is currently a widely discussed topic.
In [9], the author analyzes and compares cost models of IaaS services. In the next step, a
method is proposed to determine the parameter values of these models in such a way that
the service provider maximizes revenue. The customer’s perspective of cloud services
is presented in [10]. The author observes that besides the costs directly resulting from
the service pricing, the customer incurs many additional costs associated with using the
cloud. These costs are often invisible during the decision-making process of adopting
cloud services.

In [11], the authors present the problem of optimal selection of cloud services by
an application provider running in the cloud with the aim of minimizing costs while
maintaining the required QoS levels. Like in the aforementioned studies, in this case the
authors also focus on IaaS services. As they note: “the comprehensive charging model
for the cloud computing environment becomes even more complex when it includes
PaaS and SaaS charging models.”

In practice, utilizing cloud services limited to the IaaS model is impractical. The
rich range of managed PaaS services allows for faster solution delivery while reduc-
ing the administrative overhead associated with deploying and maintaining middleware
software. The distinctive feature of this study is the cost and performance analysis of a
solution utilizing PaaS services from the categories of CaaS and RDBaaS.

Comparison of Performance and Costs of CaaS and RDBaaS Services 87

3 Goal and Motivation

The goal of this research was to compare the performance provided by CaaS and
RDBaaS services in AWS, Azure, GCP, and OCI clouds with the performance of the
on-premise reference environment, considering the costs, in the context of designing a
high-performance IT system that utilizes containerization and a relational database.

The research question that was sought to be answered was: Can CaaS and RDBaaS
services deliver performance that is not inferior to the on-premise reference environment
while keeping the costs of the cloud environment at a level no higher than 70% of the
on-premise environment costs?

The primary motivation for undertaking the research presented in this paper was the
difficulties encountered in estimating the performance and costs that arose in Sygnity’s
business practice. The research question stated above was formulated in 2019 while
preparing the solution architecture for a tender process for the implementation of a
national IT system worth tens of millions of euros.

4 Experiment Planning

4.1 Investigated Cloud Services

The experiment was conducted using managed CaaS and RDBaaS services available
in AWS, Azure, GCP, and OCI clouds (Table 1). The CaaS services included both
Kubernetes-based solutions and cloud provider-specific solutions. Among the avail-
able RDBaaS services, those that provided database systems based on MSSQL, Oracle,
MySQL, and PostgreSQL were selected.

For each of the cloud services, computational resources (primarily CPU type) were
selected in a way that best matched the resources of the reference environment. This
task proved to be challenging due to: (1) highly diverse and simultaneously limited
resource pools available in the clouds, (2) imprecise information provided by cloud
providers regarding the utilized resources. It was not possible to find an exact match
of the same processor as the one in the on-premise environment for any of the cloud
services. However, for most services, compatible processors at the platform level (Intel
Xeon Cascade Lake) were selected.

4.2 On-Premise Reference Environment

The reference environment consisted of two Dell PowerEdge R740 servers (application
and database), built on Intel Xeon Gold 6226R CPUs, located in the Sygnity company’s
data center inWrocław.Both serverswere connecteddirectly (point-to-point) byEthernet
3 × 1 Gbps network, with RTT below 1ms.

Four database management systems have been installed on the database server: 1)
Oracle 21c Enterprise Edition, 2) MSSQL Server 2019 Developer Edition, 3) Post-
greSQL 14, and 4) MySQL Community Server 8.0.27 for Linux. The configurations of
the installed DBMS have not been optimized.

88 P. Karwaczyński et al.

Table 1. The investigated CaaS and RDBaaS services

Cloud CaaS RDBaaS

AWS � AppRunner
� ECS (Elastic Container Service) + EC2
(Elastic Compute Cloud)
� ECS + Fargate
� EKS (Elastic Kubernetes Service)

� Aurora MySQL
� Aurora PostgreSQL
� RDS MSSQL EE
� RDS MySQL
� RDS Oracle EE
� RDS PostgreSQL

Azure � AKS (Azure Kubernetes Services)
� AppServices
� ContainerApps
� Container Instances

�MySQL
� PostgreSQL
� SQL Database – MSSQL Provisioned
� OADB-TPa on Shared Exadata
(multicloud)

GCP � CloudRun
� AppEngine Flexible
� GKE (Google Kubernetes Engine)

� CloudSQL MySQL
� CloudSQL PostgreSQL
� CloudSQL MSSQL EE

OCI � OKE (Oracle Kubernetes Engine) �MySQL
�MySQL HW
� OADB-TP on Shared Exadata
� OADB-TP on Dedicated Exadata

aOADB-TP = Oracle Autonomous Database, workload type: Transaction Processing.

4.3 Benchmark Software

The experiments utilized a fragment of commercialMDM-class software [12] offered by
Sygnity for electric energymarket enterprises. The selected functionality is transmission
of profile data which consists of the following elementary business operations:

1. Retrieving daily profiles of electrical energy consumption with a 15-min resolution
from the measurement database.

2. Validating the retrieved data against business rules.
3. Transforming the data into the expected data model for the recipient.
4. Archiving the resulting message in the database.

A daily profile of electrical energy consumption consists of 96 records containing
the following: the value of the measured energy, the date and time to which the reading
corresponds, and the status of the measured value. Consumption profiles are recorded
in relation to uniquely identifiable Points of Energy Consumption (PEC). A single PEC
refers to a point in the power grid or a recipient’s address where the measurement of
energy products (such as consumed or generated active electrical energy) takes place
through appropriate devices (meters).

The transmission of profile data service was chosen due to the following features:

– It significantly strains computational resources in production deployments.
– It is highly susceptible to parallelization.
– It belongs to the set of core functionalities of the MDM system.

Comparison of Performance and Costs of CaaS and RDBaaS Services 89

The code was written using Microsoft.NET technologies: C#, Entity Framework,
Task Parallel Library, and then prepared for deployment in various environments by
encapsulation in a Docker container. It was given the working name Spectra.API1.

The Spectra.API application was used to assess the performance of cloud and on-
premise environments in which it was deployed. Performance was defined as the profile
data transmission rate, expressed in seconds per million transmitted records.

4.4 Cost Estimation of Cloud Environments

The typical time resolution of billing data is one hour, while the conducted experiments
sometimes lasted less than a minute. Being unable to measure the incurred costs, it was
decided to estimate them.

When considering the utilization of RDBaaS/CaaS services for building an MDM
system, it is reasonable to assume that these services operate continuously, allowing
business processes to be executed at any given time. With this in mind, it was decided to
estimate the monthly costs associated with using them, based on the official price lists of
their providers. The assumptions made for the cost estimation can be found in Table 2.

Table 2. The fundamental factors influencing the cost of cloud services

Cost factor Assumptions

Geographic region Poland or the region closest to Poland

Usage duration 3-year commitments, corresponding to the accepted 3-year
depreciation period for on-premise servers

Computational resources To standardize the results: 1 OCPU (OCI) = 2 vCPU (other
clouds)

Disk type SSD

High availability No high availability

Backup No backup services

Network traffic Excluded from cost estimations (free intra-zone; negligible
from/to Internet)

Currency conversions A unified currency conversion rate: 1EUR = 1USD = 4.5PLN

The annual workload dynamics for a given MDM deployment should not change
significantly within the assumed 3-year perspective, as it primarily relies on a relatively
stable number of hosted PECs. Concerning the dailyworkload dynamics, the anticipation
is that certain peakswill arise (e.g. duringworking hours, due to long-running batch jobs).
These peaks might present opportunities for cloud cost optimizations. Nonetheless, it
was decided to omit such application-specific optimizations to maintain the analysis and
conclusions on a more general level.

1 Version number 43863 was used in the experiments. For those interested in reproducing or
expanding upon the conducted experiments, the application image and its API specification
may be provided upon email request.

90 P. Karwaczyński et al.

4.5 Cost Estimation of On-Premise Environment

The cost estimations of the on-premise environment included: server acquisition costs,
colocation costs, administration costs, and licensing costs.

The cost of the servers was determined based on a competitive procurement process
conducted in Q1 2022. Assuming a 3-year depreciation period, the monthly cost of the
servers was calculated as 1/36 of their net price.

To estimate the costs of colocation and server administration, a Request for Informa-
tion (RFI) was issued to the market, encompassing the fixed cost of colocation for two
Dell PowerEdge R740 servers including Internet connection and energy consumption,
and the fixed cost of server administration, including server software administration (OS,
DBMS). Based on the received responses, the monthly net cost of colocation and server
administration was estimated.

The cost of MSSQL and Oracle licenses was calculated according to official price
calculators.

4.6 Experiment Scenario

CaaS and RDBaaS services can be run on different computational resources. To compare
their performance with the on-premise environment, it would be sufficient to use analo-
gous resources. However, it was decided to broaden the scope of experiments to gain a
broader perspective on the performance and costs of using cloud services. For this pur-
pose, a predetermined set of technical configurations, labeled KT1-KT8, was adopted.
The KT8 configuration corresponds, in terms of the number of vCPUs and RAM, to
the configuration of on-premise servers. KT1 represents the minimum configuration,
based on 1 vCPU. The remaining configurations are arbitrarily selected intermediate
configurations between KT1 and KT8. CaaS services, due to the computational power
required for data processing, have a minimum number of vCPUs in each configuration
greater than that of RDBaaS environments. The amount of RAM for RDBaaS services
was determined based on the size of the largest table storing profile data for 100,000
PECs for 1 month.

The selection of groups of pairs of services for comparison based on performance
was decided to be limited to the same DBMS. For each tested pair of services UC and
UDB, and for each test configuration KT from the set {KT1-KT8}, the following generic
experiment scenario was planned:

1. Prepare a relational database: enable the UDB database service, configure it with the
test configuration KT, create database, populate the database tables with test data.

2. Launch the application: enable the UC service, configure it with the test configuration
KT, launch the Spectra.API container image, and configure the connection between
the Spectra.API application and the prepared database.

3. Perform the experiment:
a. Execute the transmission of profile data functionality 11 times.
b. For each execution, measure the performance.
c. Save the measurement results, excluding the results of the first execution.

4. Calculate the profile data transmission rate statistics for the experiment: the
normalized, average profile data transmission rate x and its variance S2x .

Comparison of Performance and Costs of CaaS and RDBaaS Services 91

4.7 Hypotheses

To compare the performance offered by pairs of CaaS and RDBaaS cloud services
with the performance of the on-premise reference environment, two hypotheses were
formulated:

Hypothesis H 1: Equal profile data transmission rate in the cloud and on-premise,
with the null hypothesis stated as:

H 1
0 : The average rate in the cloud is the same as in on-premise.

Against the alternative hypothesis:
H 1
A : The average rate in the cloud is different from in on-premise.

Hypothesis H 2: Better profile data transmission rate in the cloud compared to on-
premise, with the null hypothesis stated as:

H 2
0 : The average rate in the cloud is not better than in on-premise.

Against the alternative hypothesis:
H 2
A : The average rate in the cloud is better than in on-premise.

5 Analysis Procedure

For each series of data transmission time measurements, the conformity of the collected
data with the normal distribution was verified using the Shapiro-Wilk test. Adequate
statistical tools were employed for the verification of assumed hypotheses, depending
on the results of the normality test for the compared samples.

5.1 Occurrence of Normal Distribution in the Compared Samples

If both compared samples confirmed conformity with the normal distribution, the statis-
tical equality of variances in these samples was examined. For this purpose, the Fisher-
Snedecor test with a two-sided critical region was utilized. Depending on the test result,
an appropriate test comparing the mean values in both samples was applied.

Equal Variances. In this case, the t-Student test for independent groups with equal
variances was used. The test statistic in this test is expressed by the formula:

t = x1 − x2√
(n1−1)S2x1+(n2−1)S2x2

n1+n1−2

(
1
n1

+ 1
n2

) (1)

and the degrees of freedom is:

DF = n1 + n2 − 2 (2)

where:
n1 – the number of included series of measurements for the on-premise experiment.
S2x1 – the variance of the sample of normalized on-premise profile data transmission

rates.
n2 – the number of included series of measurements for the cloud experiment.
S2x2 – the variance of the sample of normalized cloud profile data transmission rates.

92 P. Karwaczyński et al.

In the case of the hypothesis H 1 of equality, the critical value of the statistic for a
two-sided critical region was used, whereas in the case of the hypothesis H 2 of a better
performance, the critical value of the statistic for a right-sided critical region was used.

Unequal Variances. In this case, the t-Student test for independent groups with the
Cochran-Cox adjustment [13] was used. The test statistic in this test is expressed by the
following formula:

t = x1 − x2√
S2x1
n1

+ S2x2
n2

(3)

and the approximate degrees of freedom [14] is:

DF =

(
S2x1
n1

+ S2x2
n2

)2

(
S2x1
n1

)2
1

n1−1 +
(

S2x2
n2

)2
1

n2−1

(4)

In the case of the hypothesis H 1 of equality, the critical value of the statistic for a
two-sided critical region was used, whereas in the case of the hypothesis H 2 of a better
performance, the critical value of the statistic for a right-sided critical region was used.

5.2 Lack of Normal Distribution in the Compared Samples

To analyze cases where there is a lack of conformity with the normal distribution in
either sample, the Mann-Whitney U test [15, 16] was anticipated. This non-parametric
test utilizes ranks assigned to individual observations, making it more appropriate to
compare the medians of both samples rather than their means. However, since all the
samples exhibited conformity with the normal distribution, the use of theMann-Whitney
U test was unnecessary for the analysis.

6 Experiment Execution

The experiment was conducted in two stages. The first stage aimed to narrow down
the set of investigated services. As a result, the following services were excluded from
further investigation due to the following reasons:

• Configuration limitations: some services could not offer performance comparable to
the reference environment.

– AWS: AppRunner (max. 2 vCPU); ECS + Fargate (max. 16 vCPU)
– Azure: AppServices (max. 8 vCPU); ContainerApps (max. 2 vCPU); Container

Instances (max. 4 vCPU)
– GCP: CloudRun (max. 8 vCPU)

• Unstable operation of Spectra.API.

Comparison of Performance and Costs of CaaS and RDBaaS Services 93

– MySQL: Regardless of the cloud provider or on-premise environment, we encoun-
tered unexpected issues resulting in the failure of the tested solution. During high
multi-threaded workload, operations were interrupted by ambiguous exceptions
from MySQL, often preventing the collection of measurement results. We made
various attempts to improve stability, including using different MySQL access
libraries, testing changes to DBMS configuration parameters and connection
parameters. Despite these efforts, the situation did not improve.

• More expensive compared to functionally and performance-wise similar alternatives
available in the same cloud.

– AWS: Aurora PostgreSQL (59% more expensive than RDS PostgreSQL); EKS
(9% more expensive than ECS, while operating on the same EC2 instances)

– GCP: AppEngine Flexible (over 3 times more expensive than GKE)
– OCI: Oracle Autonomous Database on Dedicated Exadata (66% more expensive

than OADB on Shared Exadata)

As a result of the presented exclusions, a total of 9 pairs of services were included
into the second stage (Table 3). For each of the pairs, the technical configuration as the
maximum number of vCPUs was selected for each service in such a way that the total
costs did not exceed 70% of the costs of the on-premise environment based on the same
DBMS (Table 3, # vCPU columns).

Table 3. Pairs of CaaS and RDBaaS services qualified for the second stage

Cloud CaaS RDBaaS

Service # vCPU Service # vCPU

AWS ECS+EC2 32 RDS PostgreSQL 16

ECS+EC2 16 RDS MSSQL EE 8

ECS+EC2 32 RDS Oracle EE 8

Azure AKS 32 PostgreSQL 16

AKS 32 SQL Database – MSSQL Provisioned 20

AKS 32 OADB-TP on Shared Exadata (multicloud) 16

GCP GKE 32 CloudSQL PostgreSQL 28

GKE 22 CloudSQL MSSQL EE 8

OCI OKE 32 OADB-TP on Shared Exadata 16

Finally, for the prequalified pairs of CaaS and RDBaaS services running on fixed
technical configurations, the experiments were conducted according to the scenario.
Based on the collected data, statistical hypothesis tests were performed.

94 P. Karwaczyński et al.

7 Analysis

The performance data collected for eachDBMS in all tested environments is summarized
in Table 4. During the experiments conducted for the GKE configuration in combination
with PostgreSQL, the results did not exhibit conformity with a normal distribution (p-
value of 0.0207 at a predetermined significance level of 0.05). A decision was made to
repeat the experiment three times. The predominance of positive results in this additional
series indicated that the initially obtained result was a random deviation. Ultimately, the
results obtained in the first experiment of the additional series, which showed conformity
with a normal distribution, were included in the analysis. This ensured that all gathered
data followed a normal distribution, enabling more reliable comparisons (e.g., means
instead of medians).

Table 4. Performance of cloud and on-premise environments

DBMS CaaS RDBaaS Mean [s] Std. Dev. [s]

MSSQL ECS RDS MSSQL EE 0.1805 0.0294

AKS SQL Database – MSSQL Provisioned 0.1821 0.0246

GKE CloudSQL MSSQL EE 0.2922 0.0159

on-premise MSSQL DE 0.1516 0.0269

Oracle ECS RDS Oracle EE 0.1719 0.0265

AKS OADB-TP on Shared Exadata (multicloud) 0.2245 0.0434

OKE OADB-TP on Shared Exadata 0.1300 0.0379

on-premise Oracle EE 0.1469 0.0277

PostgreSQL ECS RDS PostgreSQL 0.1664 0.0383

AKS PostgreSQL 0.1446 0.0182

GKE CloudSQL PostgreSQL 0.1075 0.0261

on-premise PostgreSQL 0.2277 0.0186

For comparing cloud environments with reference on-premise environments, the
t-Student test for independent groups was mostly employed. An exception was the con-
figuration based on AWS in conjunction with PostgreSQL, where, due to statistically
different variances, the t-Student test for independent groups with the Cochran-Cox
adjustment was utilized. In Table 5 information on the results of verifying the statistical
hypotheses for the considered test configurations is given.

Comparison of Performance and Costs of CaaS and RDBaaS Services 95

Table 5. Results of hypothesis verification (at a significance level of 0.05)

DBMS CaaS Degrees of
freedom

Test value Hypothesis H1 Hypothesis H2

Crit. Value Reject Crit. Value Reject

MSSQL ECS 18 −2.29 2.10 Y 1.73 N

AKS 18 −2.64 2.10 Y 1.73 N

GKE 18 −14.24 2.10 Y 1.73 N

Oracle ECS 18 −2.07 2.10 N 1.73 N

AKS 18 −4.77 2.10 Y 1.73 N

OKE 18 1.14 2.10 N 1.73 N

PostgreSQL ECS 13 4.55 2.16 Y 1.77 Y

AKS 18 10.09 2.10 Y 1.73 Y

GKE 18 11.86 2.10 Y 1.73 Y

8 Discussion

During the analysis of the gathered data, it was found that in most cases of cloud solu-
tions, the observed performance of individual experiments did not concentrate around
the mean (except for the GKE configuration combined with MSSQL). Conversely, the
performance distribution for on-premise environments presented a completely different
scenario, where the performance of individual experiments typically centered around
the mean (except for the MSSQL-based configuration). To better illustrate the observed
performance characteristics of each environment, violin plots depicting the distribution
of observations were used. These plots were supplemented with graphical information
in the form of error boxes indicating the mean value and its standard error. The white-
colored plot represents the results achieved in the on-premise environment. The graphs
of the violin plots were accompanied by a presentation of the costs associated with the
attained performance. The reference value (represented by a dashed line) is 70% of the
costs incurred in the on-premise experiments.

The implementation utilizing MSSQL proved to be slower in all analyzed cloud
environments compared to on-premises (Fig. 1). The performance of the experiment was
notably lower when utilizing GCP GKE. The remaining analyzed environments, despite
achieving poorer results, exhibited comparable performance. All cloud environments
utilized nearly the entire available budget. In most cases, the observed performance did
not concentrate around the mean.

96 P. Karwaczyński et al.

Fig. 1. Comparison of performance for a given cost level. Selected DBMS: MSSQL

Cloud solutions based on Oracle database did not statistically differ from the on-
premises solution inmost cases, except forAzureAKS (Fig. 2).Comparable performance
to on-premises, with the lowest cost, was achieved in AWS ECS. This configuration
also exhibited performance the most centered around the mean. The remaining two
environments showed low performance stability and clear bimodal distribution.

Fig. 2. Comparison of performance for a given cost level. Selected DBMS: Oracle

Comparison of Performance and Costs of CaaS and RDBaaS Services 97

In the case of the PostgreSQL engine, better performance was achieved in all ana-
lyzed cloud environments compared to on-premises (Fig. 3). However, the observed
performance is the least stable (with highly bimodal distributions) across all cloud envi-
ronments. In terms of costs, this database exhibits the largest percentage differences
in costs between environments. The best performance, albeit at the highest costs, was
achieved when utilizing GCP GKE.

Fig. 3. Comparison of performance for a given cost level. Selected DBMS: PostgreSQL

The lack of concentration of observations around the means and the presence of
bimodal distributions in cloud environments are intriguing. The reasons behind such
behavior have not been definitively determined. We speculate that it may be attributed
to (1) the resource allocation behavior of virtualization employed by cloud providers
and (2) resource utilization optimization practices adopted by cloud providers. These
assumptions are supported by the performance fluctuations observed in the data col-
lected during a single experiment. However, the information gathered does not allow for
conclusive inferences to be drawn.

During each experiment, a predetermined number of repetitions (10) was arbitrarily
conducted. This number was based on the assumed acceptablemeasurement error, which
was defined as a 25% difference between the maximum and minimum performance
values observed in each series conducted in the reference environment. In our case,
the estimation of this error resulted in 0.038 s. With such a level of standard error of
the mean, the minimum common sample size for experiments in all environments was
determined to be 7 (the maximum value from the minimum sample sizes for each test
environment). Since 10 observations were collected, there was no need to repeat the
experiments with a larger sample size. However, it cannot be ruled out that adopting
a different acceptable estimation error for the mean could lead to different results in
verifying the stated statistical hypotheses.

98 P. Karwaczyński et al.

9 Conclusions and Future Work

The conducted experiments and analysis of the results provided a positive answer to
the research question formulated in the “Goal and Motivation” section. By using CaaS
and RDBaaS services, it is possible to achieve performance that is no worse than in the
on-premise reference environment, while keeping the costs of the cloud environment at
a level not higher than 70% of the on-premise costs. The pairs of services that meet this
condition are presented in Table 6.

Table 6. Pairs of CaaS and RDBaaS services that positively answer the research question

Cloud CaaS RDBaaS

AWS ECS + EC2 RDS PostgreSQL
RDS Oracle EE

Azure AKS PostgreSQL

GCP GKE CloudSQL PostgreSQL

OCI OKE OADB-TP on Shared Exadata

The obtained results serve us in making architectural decisions during the design of
complex information systems that utilize cloud services. However, it should be noted
that due to technological advancements, their reliability will diminish over time. This is
not a rapid process: by verifying cost estimates and repeating performance experiments
after a year, we have not found the need to change our conclusions. Nevertheless, after
2–3 years, we anticipate repeating the experiments for selected pairs of services.

Acknowledgments. Part of this work has been funded by the European Regional Development
Fund under the Smart Growth Operational Programme (contract number POIR.01.01.01-00-
0112/21-00), www.sygnity.pl/dotacje.

The authors would like to thank all members of the Sygnity Spectra project for their con-
tribution to the development of the test application, construction of research environments and
conducting experiments.

References

1. Siegel, J., Perdue, J.: Cloud services measures for global use: the service measurement index
(SMI). In: Annual SRII Global Conference (2012). https://doi.org/10.1109/SRII.2012.51

2. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services.
Future Gener. Comput. Syst. 29 (2013). https://doi.org/10.1016/j.future.2012.06.006

3. Cloud Mercato’s Manifesto. https://dochub.cloud-mercato.com/manifesto/. Accessed June
2023

4. SPEC Cloud IaaS 2018. https://www.spec.org/benchmarks.html. Accessed Aug 2023
5. Fraś, M., Kwiatkowski, J., Staś, M.: A study on effectiveness of processing in computational

clouds considering its cost. In: Proceedings International Conference on Information Systems
Architecture and Technology – ISAT 2019 (2019). https://doi.org/10.1007/978-3-030-30440-
9_25

http://www.sygnity.pl/dotacje
https://doi.org/10.1109/SRII.2012.51
https://doi.org/10.1016/j.future.2012.06.006
https://dochub.cloud-mercato.com/manifesto/
https://www.spec.org/benchmarks.html
https://doi.org/10.1007/978-3-030-30440-9_25

Comparison of Performance and Costs of CaaS and RDBaaS Services 99

6. Kwiatkowski, J., Fraś,M.:A cost based approach formultiservice processing in computational
clouds. In: Proceedings 22nd International Conference on Enterprise Information Systems
(ICEIS) (2020). https://doi.org/10.5220/0009780304320441

7. Papadopoulos, A.V., et al.: Methodological principles for reproducible performance evalua-
tion in cloud computing. IEEE Trans. Software Eng. 47(8) (2019). https://doi.org/10.1109/
TSE.2019.2927908

8. Cloud Computing Study. Market report, Foundry, form. IDG Communications (2022)
9. Dimitri, N.: Pricing cloud IaaS computing services. J. Cloud Comp. 9(14) (2020). https://doi.

org/10.1186/s13677-020-00161-2
10. Makhlouf, R.: Cloudy transaction costs: a dive into cloud computing economics. J. Cloud

Comp. 9(1) (2020). https://doi.org/10.1186/s13677-019-0149-4
11. Stupar, I., Huljenic, D.: Model-based cloud service deployment optimisation method for

minimisation of application service operational cost. J. Cloud Comp. 12(23) (2023). https://
doi.org/10.1186/s13677-023-00389-8

12. Sumic, Z., Harrison, K.: Magic quadrant for meter data management products. Market report,
Gartner (2018)

13. Cochran, W.G., Cox, G.M.: Experimental Designs. 2nd edn. Wiley (1957)
14. Satterthwaite, F.E.: An approximate distribution of estimates of variance components.

Biometrics Bull. 2(6), 110–114 (1946). https://doi.org/10.2307/3002019
15. Mann, H., Whitney, D.: On a test of whether one of two random variables is stochastically

larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). https://doi.org/10.1214/aoms/117
7730491

16. Wilcoxon, F.: Some rapid approximate statistical procedures. Ann. N. Y. Acad. Sci. 52(6),
808–814 (1950). https://doi.org/10.1111/j.1749-6632.1950.tb53974.x

https://doi.org/10.5220/0009780304320441
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1186/s13677-020-00161-2
https://doi.org/10.1186/s13677-019-0149-4
https://doi.org/10.1186/s13677-023-00389-8
https://doi.org/10.2307/3002019
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1111/j.1749-6632.1950.tb53974.x

Service Orchestration

Horizontal Scaling
of Transaction-Creating Machines

for Blockchains

Ole Delzer1, Ingo Weber2, Richard Hobeck1, and Stefan Schulte3(B)

1 Technische Universität Berlin, Berlin, Germany
ole.delzer@campus.tu-berlin.de, richard.hobeck@tu-berlin.de

2 Technical University of Munich & Fraunhofer Gesellschaft, Munich, Germany
ingo.weber@tum.de

3 Christian Doppler Laboratory for Blockchain Technologies for the Internet of
Things, Institute for Data Engineering, Hamburg University of Technology,

Hamburg, Germany

stefan.schulte@tuhh.de

Abstract. The increasing popularity of blockchains raises the question
of how to improve their scalability. While researchers are exploring ways
to scale the on-chain processing of transactions, the scalability of the
off-chain creation of transactions has not been investigated yet. This is
relevant for organizations wishing to send a high volume of transactions
in a short time frame, or continuously. Especially for blockchain imple-
mentations such as Ethereum which require transactions to include so-
called nonces, horizontally scaling transaction creation is non-trivial. In
this paper, we propose four different approaches for horizontal scaling of
transaction creation in Ethereum. Our experimental evaluation examines
the performance of the different approaches in terms of scalability and
latency and finds two of the four proposed approaches feasible to scale
transaction creation horizontally.

1 Introduction

Since the advent of smart contracts, blockchains have been explored as a founda-
tion for decentralized applications (dapps) and multi-party business processes [2].
Early blockchain platforms, like Bitcoin, offered maximum transaction through-
put rates between 3 and 15 transactions per second (tps) initially [11]. Trans-
action throughput is widely discussed as a factor impeding the scalability of
blockchain applications [8]. This very limited throughput scalability motivated
numerous proposals of consensus algorithms and blockchain platforms, including
Ripple with 1 500 tps [1] and the RedBelly Blockchain with 30k tps [3].

In some blockchain use cases, organizations may need to send a high volume
of transactions in a short time frame, or continuously. This includes among
others manufacturers of high-volume products, e.g., in application scenarios like
traceability of food or pharmaceutical products. To register each product with

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 103–118, 2023.
https://doi.org/10.1007/978-3-031-46235-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_7

104 O. Delzer et al.

an individual identifier (ID) on a blockchain, per 100 million transactions that
need to be processed per day, a throughput of approx. 1 158 tps results (assuming
1 transaction per ID).

However, conventional approaches to creating transactions do not scale easily,
within a single machine, to such throughput rates.1 Thus there is a need to scale
transaction-creating machines horizontally, i.e., using more (or fewer) machines
to create transactions, as opposed to vertical scaling, i.e., using a faster/stronger
machine, which is limited by the maximal speed/power of that single machine.
This is non-trivial, since blockchains typically require a unique identifier for
each transaction; the unique identifier is required to prevent replay attacks. For
instance, in Ethereum, this is achieved with the so-called nonce, essentially a
sequence number for transactions created by a given sender account. The com-
bination of sender account and nonce is unique. Horizontal scaling of a function
that relies on a shared variable is in general not a new topic, but the specific set-
ting for blockchain transaction creation allows for different solution approaches
than other settings. To the best of our knowledge, this is the first paper formu-
lating and addressing this problem.

In this paper, we propose four alternative approaches for achieving such scala-
bility, in part making use of the specifics of the environment like employing smart
contracts. We implement the approaches and conduct experiments to study and
contrast the properties of the four approaches, particularly in terms of scalabil-
ity, latency, and fairness. Summarizing the evaluation results, we find that one
approach only scales sub-linearly, and another one is typically less preferable
than a third. In our experiments, the remaining two approaches scale well, offer
high tps, and – with suitable parameter setting – achieve good fairness regarding
the distribution of transaction inclusion latency.

The remainder of the paper is structured as follows. After discussing related
work in Sect. 2, we present the four alternative approaches in Sect. 3. The evalu-
ation is presented in Sect. 4, and the results are discussed in Sect. 5 before Sect. 6
concludes.

2 Related Work

In 2016, Croman et al. were among the first to scientifically explore ways for
scaling blockchains [4]. They also explained why earlier methods for scaling –
increasing the block size so that more transactions can be included in a single
block while decreasing the inter-block time – are limited. That is why other,
more drastic changes are necessary to enable scalability to industrial use cases.
Another early paper by Vukolić [9] discussed different proposals for blockchain
scalability, including the option to rely on alternatives to Proof-of-Work (PoW).

1 For an individual use case, alternative architectures can be designed; however, we
here address the general class of problems where high throughput in transaction
creation is required. Layer 2 technologies are often no viable solution, if the goal is
to create persistent records on a blockchain.

Horizontal Scaling of Transaction-Creating Machines for Blockchains 105

Taking into account the popularization of smart contracts in Ethereum, Dick-
erson et al. [5] proposed that miners speculatively process transactions (and
thereby execute smart contracts) concurrently. If conflicts arise, the affected con-
tracts are rolled back and serially re-executed. The resulting execution schedule
is populated alongside the mined block so that validators can execute the smart
contracts in parallel deterministically.

Early blockchain protocols achieved only a limited number of tps. For
instance, Bitcoin achieves ca. 7 tps. PoW-based Ethereum achieved 15 tps in
2018 [1] and could, due to increased block “size” and frequency at the time
of writing, achieve a theoretical 120 tps. More recent protocols achieve higher
numbers, e.g., the RedBelly Blockchain achieved 30k tps in a globally distributed
network [3], with the authors stating that the bottleneck in this experiment was
the load generation, which is in the focus of our work. Importantly, the possi-
ble tps are primarily affected by the applied consensus mechanism. The usage of
PoW naturally leads to a low tps, while (Delegated) Proof-of-Stake (PoS) enables
increasing the tps to higher numbers. For instance, Ethereum 2.0 applies PoS,
and aims at 200k to 300k tps.

The discussed approaches mainly aim at increasing the transaction through-
put of blockchains and therefore only consider the on-chain transaction process-
ing by miners and validators. For the client-side of dapps, i.e., for the creation
of transactions, these approaches are not applicable.

Furthermore, the area of blockchain benchmarking is also relevant to the
work at hand. Benchmarking of blockchains with regard to scalability and gen-
eral performance has been an important research topic in recent years [10]. For
instance, Gervais et al. [7] present a simulation framework for analyzing secu-
rity and performance constraints of PoW blockchains. Dinh et al. [6] implement
BLOCKBENCH, which is a framework used to analyze private blockchains. For
this, respective workloads are defined. Finally, Hyperledger Caliper2 is used to
benchmark the performance of Hyperledger-based blockchains. To the best of
our knowledge, none of the discussed solutions takes into account the off-chain
creation of transactions. Therefore, the work at hand could be used in order to
extend existing frameworks and simulators.

3 Approaches

In this section, we describe our four different approaches to horizontally scale
transaction creation. All four approaches are designed to accept requests from
applications, which may be distributed over the available transaction (TX) cre-
ating machines, e.g., by a load balancer component. These TX creating machines
operate as part of the off-chain backend, which interacts with on-chain backend
components like smart contracts.

2 https://hyperledger.github.io/caliper/, accessed 2023-08-10.

https://hyperledger.github.io/caliper/

106 O. Delzer et al.

Smart
Contract 1

with business
logic

Ethereum
Network

TX Creating Machine 1

on-chain backendoff-chain backend

TX Creating Machine 2

TX Creating Machine n User Account

Middleware
(add nonce

and sign
Transaction)

Transaction

Transaction

Fig. 1. Approach 1: Externalizing the nonce setting and signing the transaction in a
separate, dedicated middleware.

3.1 Approach 1

The first approach is arguably the most straight-forward one. As depicted in
Fig. 1, the on-chain backend consists of a smart contract and a user account. The
smart contract implements the business logic, e.g., a registry of product IDs. The
user account represents an organization, e.g., the producer of high-volume goods
for which individual IDs are needed, and is used to create transactions which call
the smart contract. The off-chain backend includes the TX creating machines
as per above, and a middleware component between the TX creating machines
and the blockchain system. The middleware receives transaction objects from
the TX creating machines. These transaction objects are transmitted to the
middleware without the nonce. The middleware then adds the current nonce,
signs the transaction on behalf of the Ethereum user account, and forwards
it to the Ethereum network. Note that the TX can only be signed once the
nonce has been set. This design allows us to keep track of the nonce locally
at the middleware. We only fetch the current nonce of our user account from
the Ethereum network once at startup and store it as a local variable. Then, we
simply increment it by one every time the middleware finalizes a new transaction.
Since the nonce is irrelevant when the transaction object is first created, we can
horizontally scale the TX creating machines without concern for the nonce.

The downside of this approach is that, while transactions can be created
concurrently from multiple machines, the middleware is a singleton: setting the
nonce and signing the transactions are done on a single machine. There will be
a limit regarding the number of transactions the middleware can process per
second, which will conceivably pose a bottleneck.

3.2 Approach 2

Figure 2 depicts our second approach. Here, we circumvent the nonce prob-
lem by equipping each TX creating machine with its own user account to sign

Horizontal Scaling of Transaction-Creating Machines for Blockchains 107

transactions. This way, all machines can keep track of their individual nonce
in a local variable. They can create transactions completely independent from
each other, which allows for easy scaling without synchronization in the off-chain
backend.

Smart Contract 1 with
business logic

Ethereum
Network

TX Creating Machine 1

on-chain backendoff-chain backend

User Account 1
TX Creating Machine 2

TX Creating Machine n

User Account 2

User Account n

Smart
Contract 2

("Auth
Contract")

Transaction

authorization
info

Fig. 2. Approach 2: Allocating an individual account to each TX creating machine

However, using multiple accounts introduces a new problem concerning
authorization: the smart contract containing the business logic has to be able to
decide which invocations to accept (cf. the Embedded Permission pattern [12]).
In all other approaches, we use a single designated user account, so the smart
contract simply checks if a transaction originates from this account. In contrast,
here we want to dynamically scale our TX creating machines according to the
current workload, hence the number of accounts that should be permitted to
send transactions to our smart contract cannot be static. It must be possible
to increase or decrease the number of authorized accounts as needed, and the
smart contract needs to be able to verify the authorization of the accounts.

We achieve this by introducing a second smart contract, which we refer to
as Auth Contract. The Auth Contract maintains a list of the addresses of all
authorized user accounts. It offers a function to check if a specific address is
contained in this list, i.e., belongs to an authorized user account. The list can
be updated dynamically with a dedicated master account. Upon being invoked,
our first smart contract containing the business logic calls the Auth Contract
to check whether the transaction’s sender account is authorized. Only then will
the business logic of our first smart contract be executed; otherwise, an error is
logged and no other state change takes place. The disadvantages of this approach
are the extra complexity introduced by using a variable number of distinct user
accounts, and slightly higher gas usage (for deploying the Auth Contract, updat-
ing the variables, and conducting the checks). The list containing the authorized
accounts’ addresses has to be updated whenever the number of TX creating
machines changes, and the key pairs for all accounts have to be managed well.

108 O. Delzer et al.

Smart
Contract 1

with business
logic

Ethereum
Network

TX Creating Machine 1

on-chain backendoff-chain backend

TX Creating Machine 2

TX Creating Machine n User Account

Transaction

Singleton
Nonce

Manager

currre
nt

nonce

Fig. 3. Approach 3: Outsourcing the nonce management

3.3 Approach 3

For Approach 3, to horizontally scale our TX creating machines, we outsource
the nonce management to a new singleton component called Nonce Manager
(see Fig. 3). As a singleton, there is only one instance that is shared by all TX
creating machines. So instead of maintaining the current nonce’s value locally at
the TX creation machines, it is only stored at the Nonce Manager. Every time
the TX creating machines create a new transaction, they request a nonce value
from the Nonce Manager. The Nonce Manager then responds with the value of
its nonce counter and increments it by one afterwards. The TX creating machine
sets the nonce to the received value for the new transaction, which is then signed
and sent to the Ethereum network.

The disadvantage of this approach is that it entails a service invocation every
time a transaction is created. This will presumably increase the time it takes to
create a transaction, thereby decreasing the tps. The impact will likely depend on
the network latency between a TX creating machine and the Nonce Manager and
the load of the latter: the Nonce Manager is shared by all TX creating machines,
and naturally subject to limited bandwidth and computing power. The Nonce
Manager also poses a single point of failure. However, the Nonce Manager only
implements the functionality of a data store containing a single key-value pair,
so it should be feasible to achieve high performance and resiliency.

3.4 Approach 4

As we can see in Fig. 4, Approach 4 is quite similar to Approach 3: We also
externalize nonce management to a dedicated singleton Nonce Manager. But
instead of having the TX creating machines requesting the nonce from the Nonce
Manager for every new transaction individually, we use the Nonce Manager to
allocate nonce contingents to the machines.

For example, say we use a contingent size of c = 100 and the current nonce
value stored in the Nonce Manager is 1 500. If a particular TX creating machine A

Horizontal Scaling of Transaction-Creating Machines for Blockchains 109

Smart
Contract 1

with business
logic

Ethereum
Network

TX Creating Machine 1

on-chain backendoff-chain backend

TX Creating Machine 2

TX Creating Machine n User Account

Transaction

Singleton
Nonce

Manager

nonce

contingent

Fig. 4. Approach 4: Assigning nonce contingents

requests the next nonce contingent from the Nonce Manager, the latter responds
with the contingent of nonces 1 500 to 1 599. The Nonce Manager then increments
the current nonce by the contingent size of c = 100, so the new value is 1 600. A
can now start to create transactions with nonces from 1 500 to 1 599. Afterwards,
A requests another contingent from the Nonce Manager and the cycle repeats.

This will lead to situations where, for example, another TX creating
machine B creates transactions with nonce 1 600 and above while A has not
yet used all nonces between 1 500 and 1 599, i.e., there are nonces lower than
1 600 yet unused. For transaction creation itself, this is not a problem. But once
it is sent to the Ethereum network, a transaction with a nonce that is higher
than a yet-unused nonce has to wait in the miner’s transaction pool – until all
lower nonce values are used in a mined or pending transaction. Hence, larger
contingent sizes will increase the expected waiting time (latency) of the transac-
tions and also lead to a higher variance in the distribution of waiting times. The
advantage compared to Approach 3 is that the frequency and volume of requests
to the Nonce Manager is much lower when requesting whole nonce contingents
instead of single nonces, which allows the Nonce Manager to serve more TX
creating machines.

4 Evaluation

In our experimental setup, up to three TX creating machines are used on indi-
vidual VMs. The private Ethereum network, consisting of a single Geth node,
was operated on another, separate VM. To allow high transaction throughput,
the node was operated with the consensus mechanism Proof-of-Authority (PoA),
at 400 M gas per block, and an inter-block time of 5 s, resulting theoretically in
up to 3 800 tps. This proved sufficient for all the experiments we conducted, i.e.,
the blockchain was not the bottleneck. There also was a separate VM for the
middleware in Approach 1 and for the Nonce Manager in Approaches 3 and 4,
respectively. We use Microsoft Azure as cloud computing platform. All VMs were

110 O. Delzer et al.

of the size Standard A1 v2, which comprises a single vCore3, 2 GiB of RAM, a
download bandwidth of 1 500 Mbit/s and an upload bandwidth of 250 Mbit/s.

We configured the mining node to mine a new block every 5 s. For Approach
1, the total number of TX creating machines has an impact on their performance,
so we tested Approach 1 with three configurations, i.e., one to three machines m.
Approach 4 was also tested with different configurations, at first with a nonce
contingent size of c = 100, then c = 1000, and lastly, c = 10 000. Simulations for
Approaches 2 and 3 did not have different configurations. Load was simulated
to exert the transaction creation throughput continuously. The code for the TX
creating machines and the experiments are available at Gihub4.

4.1 Transaction Throughput

In this section, we discuss the evaluation of the transaction throughput of our
approaches to scale TX creating machines. Throughput, in this case, refers to
how many transactions are created per second (tps).

Figure 5 shows a comparison of the total transaction throughput, i.e., the
transaction throughput of all machines combined, between the four approaches.
We can see that Approach 1 performed the worst. Even with m = 3 TX cre-
ating machines running simultaneously, this approach yielded a median of only
about 680 tps. Also, the increase in throughput is sub-linear with a growing
number of machines. In contrast, all the other approaches achieved significantly
higher throughput rates, with medians ranging from 980 up to 1 045 tps. It
appears that the middleware used in Approach 1 already poses a severe bottle-
neck when we only use a small number of machines. We observed the highest
throughput for Approach 2 with 1 045 tps (median). That corresponds to our
expectations because the TX creating machines in Approach 2 can locally keep
track of the current nonce. In contrast, Approaches 3 and 4 regularly have to
make external requests to the Nonce Manager. Still, the difference in performance
between Approaches 2, 3 and 4 is only marginal. It is especially notable that the
median transaction throughput for Approach 3 with 1 030 tps was only slightly
smaller than that of Approach 2, even though the TX creating machines had to
make a request to the Nonce Manager for every single transaction they created.
Figures 5 and 6 show a similar spread of the distributions for all settings, with
two exceptions: Approach 1, m = 3 and Approach 4, c = 10 000. The former is
clearly suboptimal, and does not warrant further discussion, while the latter is
of interest and this setting will be discussed in detail in Sect. 4.2.

Figure 6 shows the transaction throughputs per machine for the different
approaches and configurations. Here, we can see even more clearly that the mid-
dleware in Approach 1 becomes a bottleneck as soon as we try to horizontally
scale transaction creation. When only a single transaction-machine was running,
Approach 1 achieved a median throughput of 435 tps, the highest observed
throughput across all machines and configurations. The reason for this is that

3 Intel Xeon Platinum 8272CL CPU @ 2.60 GHz.
4 https://github.com/OleDe/ethereum-tx-scaling.

https://github.com/OleDe/ethereum-tx-scaling

Horizontal Scaling of Transaction-Creating Machines for Blockchains 111

Fig. 5. Comparison of the total transaction throughput

Fig. 6. Comparison of the transaction throughput per machine

the machines in Approach 1 do not have to sign the transactions, but instead
only create and forward “unfinished” transactions to the middleware. For all
other approaches, the machines are themselves responsible for signing the trans-
actions, which leads to lower performance in the individual machine. However,
once we consider m = 2 TX creating machines, the throughput per machine of
Approach 1 drops to a median of 307 tps. At m = 3 machines, Approach 1 only
offers a median throughput per machine of 230 tps, which is significantly lower
compared to the other approaches, whose median throughput rates per machine
range from 323 tps to 348 tps.

Summarized, Approaches 2, 3 and 4 offer adequate throughput rates that
increase proportionally when adding more TX creation machines. For Approach
1, on the other hand, the middleware poses a bottleneck when scaling hori-
zontally, so its throughput does not increase proportionally when the number
of machines is increased. For all four approaches, the throughput was mostly
stable, i.e., the variance of the throughput over time was low. In addition, the
load was distributed evenly across all active machines; no single machine had
significantly higher/lower throughput than others during the same run.

4.2 Latency and Waiting Periods

In this section, we examine the transactions’ latency, measured as waiting peri-
ods. With the term waiting period we describe the time it takes from a transac-
tion’s creation at the TX creating machine to it being included in the Ethereum

112 O. Delzer et al.

blockchain. Note that we do not use the term commit time from the litera-
ture [11], since that is measured from transaction announcement to the network,
which is less suitable for our purposes.

0
1000
2000
3000
4000
5000
6000
7000

1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50

fr
eq

ue
nc

y

wai�ng period in seconds

total

machine1

machine2

machine3

Fig. 7. Approach 2: Aggregated waiting periods with bin sizes of 0.25 s

0
2
4
6
8

10
12

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40

re
la

�v
e

fr
eq

ue
cn

y
in

 %

wai�ng period in seconds

1st run,
c=100

2nd run,
c=1 000

3rd run,
c=10 000

Fig. 8. Approach 4: Aggregated waiting periods with bin sizes of 0.5 s for different
contingent sizes

Figure 7 shows the distribution of waiting periods for Approach 2; obser-
vations for Approaches 1 and 3 were almost identical, hence the following also
applies to them. The shortest (longest) observed waiting periods were at approx-
imately 1.8 (7) s, respectively. In-between this interval, the waiting periods follow
roughly a uniform distribution. This was to be expected, because we continu-
ously create new transactions while creating new blocks and thereby including
transactions in the blockchain every 5 s. Hence, the length of the interval also
approximately corresponds to the configured inter-block time of 5 s. On average,
it took 4.4 s from a transaction’s creation to its inclusion in the blockchain.

The frequency of observed waiting periods noticeably drops at the 5-second-
mark, as can be seen in Fig. 7. Through further testing, we could confirm that
this drop depends on the configured inter-block time, i.e., when changing the
inter-block time to a specific value, the drop could then be observed around that
new inter-block time. Given that the behavior of Ethereum clients is not in our
focus, we did not investigate this particularity further.

Figure 8 compares the distribution of waiting times of Approach 4 for contin-
gent sizes of c = 100, c = 1000 and c = 10 000. In general, the observed waiting
periods were lower when smaller contingent sizes were used, because assigning
nonce contingents leads to situations where transactions with higher nonces have

Horizontal Scaling of Transaction-Creating Machines for Blockchains 113

already reached the transaction pool of our Ethereum node, while some transac-
tions with smaller nonces have not yet been created. The transactions with the
higher nonces then have to wait in the queue until all transactions with lower
nonces have been created and sent to the Ethereum node as well. For larger
nonce contingents, this effect intensifies and the average length of the waiting
period increases.

0

1000

2000

3000

4000

5000

6000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

fr
eq

ue
nc

y

�me in seconds

mined

created

Fig. 9. Approach 2: Comparison between the number of created transactions and the
number of transactions included in the blockchain over intervals of 5 s

For a contingent size of c = 100, the distribution of waiting periods is simi-
lar to that of Approaches 1, 2 and 3. The observed waiting periods range from
1.8 to 7.2 s. Within this interval, they approximately follow a uniform distri-
bution, except for the drop in frequency around the 5-second-mark which we
also observed for the other approaches. When increasing the contingent size to
c = 1000, the average length of the waiting periods already slightly rises. But for
contingent sizes of c = 10 000, we observe a drastic upsurge, with transactions
waiting up to 40 s from their creation to being included. With a transaction
throughput of about 330 tps on average, the TX creating machines are fast
enough to completely deplete a whole contingent for c = 100 and c = 1000
within the 5 s inter-block time. But for c = 10 000, a machine needs about 30 s
until it has used all nonces of a contingent. Accordingly, for larger contingent
sizes, the inter-block time is less and less the determining factor for a trans-
action’s estimated waiting period, but instead the average time it takes for all
transactions with lower nonces to also reach the miner.

Nevertheless, as long as the contingent size is not configured to be overly
large, Approach 4 offers comparable latency/waiting periods to the other
approaches. Across all approaches, waiting periods were low and independent
from the TX creating machine from which a transaction originated.

4.3 Performance of the Mining Node

In this section, we present additional data regarding the inclusion of transactions
in the blockchain and the status of our miner in general. Like in Sect. 4.2, we first
discuss results for the first three approaches and then regard Approach 4 sepa-
rately. Again, Approaches 1, 2 and 3 behaved very similarly, hence Figs. 9 and 10

114 O. Delzer et al.

are representative for Approaches 1 and 3 despite being based on data from App-
roach 2.

Figure 9 depicts a comparison between the number of created transactions
and the number of transactions included in the blockchain over intervals of 5 s,
respectively. Again, we chose 5 s as the size for the intervals because it corre-
sponds to the inter-block time. We can see that both the mining rate and the
creation rate are quite stable, with no noteworthy fluctuations. In addition, the
mining rate is approximately identical to the creation rate, so the miner was
able to constantly keep up with the TX creating machines. That is also visi-
ble in Fig. 10, where we can see the transaction count per block compared to
the size of the transaction pool (pending transactions and queued transactions)
right after the block was mined. The observed number of pending transactions
did not increase over time but almost stayed constant, so the transactions were
included in the blockchain just as fast as they were created. The number of
queued transactions was always zero. This is expected, since, for Approaches
1–3, the transactions are always created in sequence according to their nonces.
Therefore, we observed no instance of a transaction with a higher nonce being
in the transaction pool before a transaction with a lower one, at the points of
observation.

0
1000
2000
3000
4000
5000
6000

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

nu
m

be
r o

f T
Xs

block number

mined

pending

queued

Fig. 10. Approach 2: Transaction count per block compared to the number of pending
and queued transactions right after the block was mined

The same does not apply for Approach 4, especially for larger contingent
sizes, as can be seen in Fig. 11. While the transaction creation rate is fairly
stable, the contingent size of c = 10 000 led to heavy, periodic fluctuations for
the rate at which transactions are included in the blockchain. Here, we observed
a standard deviation of σ = 3800.

The reason for these fluctuations can be seen in Fig. 12: when using larger
contingent sizes c, transactions with higher nonces remain in the transaction
pool longer, in the queued status. They have reached the Ethereum node but
cannot be included (or “mined”) because not all transactions with lower nonces
have yet been created and sent to the Ethereum node. The maximum possible
number of these temporarily “missing” transactions is of course higher for larger
contingent sizes c. More specifically, with m = 3 TX creating machines running
at roughly the same speed, the maximum is at 2c. The higher the value of c, the
longer it takes the TX creating machines to create all the missing transactions,

Horizontal Scaling of Transaction-Creating Machines for Blockchains 115

and the longer the queued transactions with the higher nonces have to wait
and their number is building up. Eventually, when all missing transactions have
been created and sent to the Ethereum node, the queued transactions can be
included in the blockchain. Therefore, they are shifted to the pending status all
at once. They are then included in the next block (or in the next multiple blocks,
if their combined amount of gas is higher than the gas limit for a single block)
to be mined and become a part of the blockchain. As a result, the mining rates
are periodically fluctuating above and below the creation rates in Fig. 11. The
theoretical maximum of simultaneously queued transactions is also 2c, assuming
we have m = 3 TX creating machines with the same throughput.

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

fr
eq

ue
nc

y

�me in seconds

mined

created

Fig. 11. Approach 4, c = 10 000: Comparison between the number of created transac-
tions and the number of transactions included in the blockchain over intervals of 5 s

0

5000

10000

15000

20000

25000

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

nu
m

be
r o

f T
Xs

blocknumber

mined

pending

queued

Fig. 12. Approach 4, c = 10 000: Transaction count per block compared to the number
of pending and queued transactions right after the block was mined

5 Discussion

Overall, the first approach, where we add the nonce at a dedicated singleton
middleware, displayed the weakest scalability. While the transaction throughput
increased proportionally for additional TX creating machines in Approaches 2,
3, and 4, this was not the case for Approach 1. Instead, the throughput increase
caused by adding additional machines quickly declined, so scaling from two to
three machines only increased throughput by 10.8 %. When scalability is a main
objective, Approach 1 should likely be avoided.

116 O. Delzer et al.

In contrast, Approach 2 displayed a much more favorable performance, with
a very stable throughput that sufficiently increases when adding TX creating
machines. The key advantage of Approach 2 is that the TX creating machines
do not depend on any other component to set the nonce or to forward trans-
actions to the Ethereum Node, which is why it offered the overall highest
throughput of 1 045 tps. As a downside, Approach 2 requires supplying a dis-
tinct Ethereum Account for each TX creating machine and a slightly higher gas
usage. This might introduce higher complexity for dynamically scaling the num-
ber of machines and for realizing authentication and authorization. In summary,
Approach 2 is a solid design choice to implement horizontal scalability for TX
creating machines, provided that using multiple Ethereum accounts or higher
gas usage are acceptable in a given context.

For Approach 3, it is harder to give a clear recommendation. During our
simulation run with three TX creating machines, the transaction throughput of
our implementation was similar to Approach 2. With an average of 1 030 tps, it
even outperformed Approach 4 – albeit slightly – for all three tested contingent
sizes. However, the singleton Nonce Manager will eventually become a bottle-
neck when too many TX creating machines are running concurrently, so both
Approach 3 and Approach 4 cannot be scaled indefinitely. The big disadvantage
of Approach 3 is that the TX creating machines will have to make c-times as
many requests to the Nonce Manager as they would in Approach 4. This means
the Nonce Manager will become a bottleneck in Approach 3 considerably sooner,
so the maximum number of machines running concurrently is drastically higher
in Approach 4. In contrast to the other approaches, if the contingent size c is
too large, Approach 4 is suboptimal in terms of latency, and particularly the
distribution of waiting times, which can be understood as fairness. By selecting
a smaller c, this issue can be avoided. Given these points, Approach 4 should
generally be preferred over Approach 3, even though the average throughput
was slightly higher for Approach 3.

Approaches 2 and 4 are both decent choices for implementing horizontal
scaling of transaction creation, and they offer very similar performance. How-
ever, while Approach 2 requires a way to deal with account management and
authorization (see Sect. 3.2), Approach 4 necessitates implementing an additional
component – the Nonce Manager – which poses a single point of failure, so there
need to be adequate measures for mitigation and recovery. For a given context,
the choice comes down to finding the better trade-off between the drawbacks
and advantages, in most contexts likely between Approaches 2 and 4.

6 Conclusion

Following the increased throughput scalability of blockchain systems, high-
volume applications with a single participant issuing thousands of tps become
possible. However, the horizontal scaling of transaction-creating machines has
received little attention in research to date. We study this subject and propose
four approaches to this end. Prototypical implementations of the approaches

Horizontal Scaling of Transaction-Creating Machines for Blockchains 117

allow us to evaluate them experimentally. Our work demonstrates that it is
feasible to horizontally scale transaction creation, and two of the approaches –
Approaches 2 and 4 – achieve both good scalability and fair latency distribu-
tions. Approach 2 introduces additional complexity because it requires on-chain
account management and slightly higher gas usage, but it offers the highest
throughput. Approach 4 relies on the Nonce Manager, which could become a
single point of failure, and achieved a throughput only slightly below that of
Approach 2.

In future work, we want to take into account the failure of transactions and
ordering constraints on the incoming requests. We so far assumed that there
are no dependencies between transactions other than the nonce of their associ-
ated Ethereum account. However, business logic might require transactions to
be processed in a specific sequence, and that sequence would then need to be
accounted for when setting the nonces. This case should be researched more, as
it might require changes to the transaction creation approaches, or even render
Approach 4 unsuitable. Last but not least, we have not regarded the batching
of transactions so far.

Acknowledgements. The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology and
Development as well as the Christian Doppler Research Association for the Christian
Doppler Laboratory for Blockchain Technologies for the Internet of Things is gratefully
acknowledged.

References

1. Bach, L.M., Mihaljević, B., Z̆agar, M.: Comparative analysis of blockchain con-
sensus protocols. In: International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO), pp. 1545–1550. IEEE
(2018)

2. Bratanova, A., et al.: Blockchain 2030: a look at the future of blockchain in Aus-
tralia. Technical report, Data61, CSIRO, Brisbane, Australia (2019)

3. Crain, T., Natoli, C., Gramoli, V.: Red belly: a secure, fair and scalable open
blockchain. In: IEEE Symposium on Security and Privacy (SP), pp. 466–483. IEEE
(2021)

4. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

5. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: ACM Symposium on Principles of Distributed Computing, pp. 303–
312. ACM (2017)

6. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.: BLOCKBENCH:
a framework for analyzing private blockchains. In: 2017 ACM International Con-
ference on Management of Data, pp. 1085–1100. ACM (2017)

7. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On
the security and performance of proof of work blockchains. In: 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 3–16. ACM (2016)

https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8

118 O. Delzer et al.

8. Khan, D., Jung, L.T., Hashmani, M.A.: Systematic literature review of challenges
in blockchain scalability. Appl. Sci. 11(20), 9372 (2021)

9. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-
cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

10. Wang, R., Ye, K., Xu, C.-Z.: Performance benchmarking and optimization for
blockchain systems: a survey. In: Joshi, J., Nepal, S., Zhang, Q., Zhang, L.-J. (eds.)
ICBC 2019. LNCS, vol. 11521, pp. 171–185. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-23404-1 12

11. Weber, I., et al.: On availability for blockchain-based systems. In: IEEE Inter-
national Symposium on Reliable Distributed Systems, pp. 64–73. IEEE (2017).
https://doi.org/10.1109/SRDS.2017.15

12. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for blockchain-
based applications. In: European Conference on Pattern Languages of Programs,
pp. 1–20. ACM (2018)

https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-030-23404-1_12
https://doi.org/10.1007/978-3-030-23404-1_12
https://doi.org/10.1109/SRDS.2017.15

Uncovering Effective Roles and Tasks for Fog
Systems

Maximilian Blume(B), Sebastian Lins, and Ali Sunyaev

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
maximilian.blume@partner.kit.edu

Abstract. Fog computing has evolved as a promising paradigm to overcome
challenges of edge and cloud computing for use cases such as autonomous driving
and virtual reality demanding low latency and the handling of large data loads.
The design of fog systems between the cloud and edge opens a large space of
possible tasks that fog nodes can take, such as (pre-)processing data or providing
advanced security measures for networks. The question remains which tasks a fog
system should effectively fulfill to meet the objectives of a specific use case and its
requirements. We address this question by developing a hierarchy of standardized
tasks and roles (defined as effective sets of recurring tasks for fog systems) based on
the analyses of implemented and proposed fog systems from 105 research articles.
Researchers and practitioners can leverage this hierarchy to select effective fog
roles for use cases and mitigate conceptual ambiguity related to fog computing.

Keywords: Fog Computing · Fog Nodes · Fog Tasks · Fog Roles

1 Introduction

Fog computing describes an additional compute, storage, and networking layer, con-
sisting of so-called fog nodes that reside between a centralized cloud infrastructure and
decentralized edge devices [1]. Fog computing gains increasing traction as promising
computing paradigm that can solve shortcomings of cloud and edge systems for novel
use cases such as Autonomous Driving (AD) and Virtual Reality (AR) with challeng-
ing latency, bandwidth, and energy-consumption requirements [2]. Recent examples of
larger scale fog system implementations have proven the benefit of an additional, inter-
mediate IT infrastructure layer, such as connected tools that offload data to fog nodes
while charging their battery to save energy and reduce cost of edge devices [3].

A fog system can take over tasks from both edge devices and the cloud to offer
digital services and enable innovative IT use cases. There are many options to set up fog
systems and manifold roles that these systems can take over in an IT landscape. Here, a
role is referred to as an effective set of recurring tasks that a fog system performs to fulfill
the objectives of a specific use case as intermediary between central cloud services and
distributed edge devices. The portfolio of potential roles for a fog system ranges from

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 119–135, 2023.
https://doi.org/10.1007/978-3-031-46235-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_8

120 M. Blume et al.

simple processing support services for edge sensors up to a fog hub that offers complex
processing, networking, and security services close to the edge [4].

However, developers and system designers currently struggle to identify and select
appropriate roles due to the novelty of fog computing and the low maturity of the appli-
cation domain [5]. Selecting viable fog roles is crucial because the effectiveness and
suitability of a role for fog systems interdepends with the use case and its requirements.
More importantly, developers and designers must set up fog systems differently for each
role. For example, a smart power grid that requires very low latency to handle emergency
requests demands a fog system that performs orchestration tasks to prioritize emergency
requests for processing at available fog nodes [6]. For smart grid IT system designers,
it is then difficult to assess if the fog system should also manage the network, take over
security-related tasks, or focus on processing and orchestrating tasks only. Similar, a use
case with mobile edge devices and fog nodes requires a multi-layer, central overarching
fog system that is managing the network and guarantees consistent target addresses for
every entity [7]. In contrast, static edge devices allow the deployment of a one-layer flat
hierarchy of fog nodes [8]. Hence, the design of a fog system depends on the use case
dictating what the fog system can, need, or cannot do.

Under consideration of the use case requirements (e.g., latency, resilience, data load),
fog system developers must make well-founded decisions regarding the system archi-
tecture and technical specifications. For an informed decision, designers and developers
require both a better understanding of (1) potential fog system roles that real-world
implementations and experiments proved as being effective for their use case, and (2)
how the assignment of a role to their fog system will affect the fulfillment of use case
requirements. Unfortunately, the terminology of roles, related tasks and implementa-
tions of fog systems are diverse and not standardized because manifold fog systems are
currently under development inmany industries and use cases with varying requirements
[9]. Accordingly, it is difficult for practitioners to identify viable fog system roles from
literature or implementations that match their use case and that could provide sugges-
tions on the fog system design. Practitioners can hardly oversee their design choices and
expected effects until they understand how fog roles and tasks relate to use cases, the
fulfillment of use case requirements, and required system architectures. The full value
of fog systems may stay untapped in case of ineffective design choices.

Related research on discussing fog system tasks and roles consists of descriptive
surveys, taxonomies, and reference architectures each contributing a specific perspective
on the structuring of fog systems. Partly, research on tasks proposes very specific tasks
defined from a technical perspective (e.g., [9, 10]). Alternatively, other literature on tasks
defines generic fog node tasks such as offering Software as a Service [11]. While all
of them contribute to a better understanding of fog nodes, prior studies do not discuss
effective sets of tasks (i.e., roles) that fog systems usually fulfill. Related research on
roles describes very specific roles based on one or a few similar use cases without
standardizing certain parts of the role (e.g., [4, 12]). Further, research often defines
roles based on the industry where the fog system is applied in (e.g., [13]), although
fog systems may fulfill similar tasks under similar requirements in different industries.
Overall, prevalent research agrees that the standardized description of fog applications
still is immature (e.g., [5]). Besides, existing fog research uses terminologies for tasks

Uncovering Effective Roles and Tasks for Fog Systems 121

and roles ambiguously so that fog systems for similar roles cannot be compared easily
[9]. We therefore target to answer the following research question: What are common
tasks and roles of fog systems?

We address this problem by developing a fog task-role hierarchy. Applying a top-
down and bottom-up literature review, we analyzed existing research on tasks and roles
and iteratively aggregated and defined both tasks and roles based on actual and proposed
fog systems to build a hierarchy and support the semantic standardization and catego-
rization of fog systems. In this use-case-centric hierarchy, roles are on the highest level
and combine one or several tasks that itself encompass more specific sub-tasks. In total,
we identified six fog system roles, namely processing assistance, security enforcer, net-
work controller, smart processing support, edge manager, and hub, comprising four key
tasks and ten sub-tasks. Practitioners and researchers can leverage the hierarchy (and
the categorized articles) as foundation for the design of new fog systems that build upon
existing knowledge.

2 Theoretical Background

2.1 Fog Computing

CISCO was one of the first that introduced the concept of fog computing to support
edge devices with separate physical nodes providing additional compute, storage, and
networking capabilities in a geographically close position [1]. We define the layer of
fog nodes together with its relations to adjacent edge or cloud layers and interacting end
users as fog system. With that, we interpret fog systems as socio-technical constructs to
highlight individuals and technologies interacting in order to fulfill a use case’s objectives
[14]. A fog system has entities such as edge devices, fog nodes or cloud services that
can request or fulfill tasks or end users that can only request tasks. Fog nodes itself can
have processing, storage, and networking resources [1]. As edge devices, we interpret
any sensors, mobile devices, vehicles, etc. that have capabilities to sense and/or act,
deployed at the edge of a network, often with direct contact to users.

Fog nodes enhance the cloud infrastructure in a continuum of both varying geo-
graphic distance and extent of capabilities because fog nodes can be either placed directly
next to edge devices or in larger distances to support a higher number of devices in a
specific area [15]. Thereby, fog nodes can process data andworkloads from the edgewith
much lower latency compared to the cloud [16]. For instance, network service providers
can enhance roadside units (RSUs) across a city with additional processing capabilities
to take over the resource-intensive task of sensor fusion and object detection for several
vehicles [7]. Besides improving latency, fog nodes can reduce data loads that need to
be sent to the cloud by aggregating and filtering data received from the edge [17]. For
use cases with sensitive data, fog systems can also enhance privacy across the system
keeping data and its processing close to their creation and usage [18].

2.2 Related Research on Roles and Tasks in Fog Computing

Being placed between edge devices and the cloud, a fog node can take over tasks from
both layers. Tasks thereby describe categories of (recurring) activities that need to be

122 M. Blume et al.

done by one or several fog nodes to fulfill the purpose of the whole edge, fog and cloud
system in the context of a specific use case [10]. In that sense, tasks can be both direct
processing support for the edge or cloud as well as supporting activities like ensuring
a balanced load across the system. For instance, a fog node task can be the real-time
analysis of sensor data to detect abnormalities [19] or the authentication for new fog
nodes joining the system [20]. Tasks can be inherently defined in nodes when setting
up the fog system (e.g., constantly optimize routing tables [21]) or flexibly submitted
by entities (e.g., users request sensor data aggregation [22]). We define a “job” as the
specific instantiation of a task, that is, a runtime manifestation of a fog node doing
something. A fog system can consist of one or more physically separated fog nodes that
can individually either fulfill all or individual tasks related to the assigned fog system
role. We therefore do not apply roles for individual fog nodes but interpret the totality
of fog nodes in a specific use case as a fog system fulfilling one role.

Existing research on structuring tasks either takes a detailed technical perspective
on specific tasks or defines high-level task categories. For instance, Mahmud et al.
[10] define tasks that fog nodes could do to provide a benefit for specific technical
applications, among others, act as a server in content-delivery networks to cache content
close to edge. Ahmed et al. [11] define more generic categories of tasks for fog nodes
such as the provision of a certain function as a service. Yousefpour et al. [9] provide a
detailed summary of potential software modules and activities that need to be defined
for an extensive fog system to function, such as the load balancing between nodes or the
placement of virtual machines. While prior research contributes valuable details on the
potential implementation of fog systems, they rather take a technical perspective instead
of a use-case-centric perspective and do not discuss effective sets of tasks that a fog
system can, cannot or should do depending on the use case.

Initial research on fog roles largely focuses on an anecdotal description of specific
roles but neglects to generalize roles across use cases and contexts. For instance, Naha
et al. [4] and Nath et al. [12] define industry-specific roles for fog systems based on
existing fog architectures but neglect to discuss similarities of the defined roles or to
standardize facets of the roles. Mouradian et al. [13] differentiate fog systems as per
industry, helping designers to select an effective fog system. Nevertheless, fog systems
in different industries may fulfill the same tasks under similar requirements, for example,
signal processing for healthcare sensors and for smart grid sensors that both need to work
very reliably and recognize deviations or potential threats in an instant. A comparison of
roles and tasks across industries thus might provide further insights, such as conditions
when roles are generalizable and when not. Especially, since best practices for fog
systems in one industry may not be easily transferred to other industries although the
underlying tasks may be similar. Habibi et al. [5] similarly state that the description of
fog applications still has a low maturity and lacks standardized components. We argue
that the structuring of roles and tasks for fog systems need to be led by generic and
industry-agnostic use cases to provide guidance for the design and comparison of fog
systems, contributing to a constant evolution of their implementation.

Uncovering Effective Roles and Tasks for Fog Systems 123

3 Research Approach

3.1 Literature Search

We performed a descriptive literature review to identify tasks and combine them into
roles, following guidance on conducting literature reviews [23, 24]. We focused on
conference and journal articles published in IEEE Xplore, EBSCOhost, ScienceDirect,
ACM Digital Library, and ProQuest to cover relevant literature in the domain of cloud,
fog, and edge computing. For our research objective to conceptualize a fog-specific
task-role hierarchy, we combined a top-down and bottom-up approach. From a top-down
perspective, we searched for articles discussing fog system tasks and roles (search string:
Title (fog AND (role or task)) NOT (scheduling* OR prioritization* OR offloading*
OR allocation* OR placement* OR distribution*). Due to the generic use of the terms
“role” and “task”, we only selected literature having these terms in their document title
ensuring a focus on the investigation of roles or tasks for fog computing. We also focus
our research on the setup of fog systems and less on the detailed processing operations of
fog systems, and therefore excluded literature related to task scheduling, prioritization,
etc. From a bottom-up perspective, we searched for specific fog implementations to
incorporate how fog systems are setup or planned to be setup to fulfill certain tasks and
roles (search string: (fog AND (network OR system OR computing) AND (architecture
OR design OR setup)). This bottom-up approach enabled us to examine proposed fog
systems and derive respective tasks and roles, while gathering data on how the fog system
is implemented to meet use case requirements.

In total, we found 553 articles that we checked for relevancy. We removed 4 books,
76 duplicates, 51 articles focusing on other topics than fog computing (e.g., literature dis-
cussing biological fog such as [25]), 104 articles applying a generic fog architecture, 168
articles focusing on the processing operations of fog systems, 26 articles providing a sur-
vey or taxonomy of fog computing, and 19 articles focusing on Radio Access Networks
(RAN). We excluded generic fog architectures as they discuss potential applications but
not specifically what and how fog systems can take over certain tasks, and RAN-focused
articles as they focus on very specific details of fog computing technologies, for instance,
network transmission bandwidth allocation [26]. We thoroughly analyzed the remaining
105 articles to extract descriptions of tasks or roles for fog systems and their technical
system setups. Notably, analyzed articles focus on setting up new fog systems rather
than retrofitting existing or legacy IT systems with a fog system.

3.2 Literature Analyses

We followed a structured coding approach to iteratively identify, structure, and refine
tasks and roles for fog nodes and systems [27]. Starting with the fog implementation-
focused articles identified with the bottom-up approach, one author coded every task
that a fog node was designed to fulfill and noted a title, description, and its source. For
instance, Taherizadeh et al. [28] propose a fog system that processes data, prioritizes
processing tasks and assigns tasks to fog nodes depending on their utilization. The author
coded three tasks and added a role consisting of these tasks named “Processing and
resourcemanager”. For the following articles that he coded, he either defined a new task if

124 M. Blume et al.

an activity described by the article’s authorswas not already in the list of tasks, or adapted
tasks to standardize the description of similar activities for fog nodes. For instance, he
combined the task of “process container” and “process virtual machine” to “process
virtualized job” and distinguished that task from “process data” as the former demands
more flexibility and imposes higher requirements. To reach sufficient abstraction and
standardization, the team of authors aggregated tasks and developed a structure of tasks
and sub-tasks, for instance, summarizing all activities like data aggregation, filtering,
etc. under the sub-task “process data” belonging to the task “processing”. In total, we
coded 227 activities that we aggregated into four tasks and ten sub-tasks.

To identify roles, we either assigned a role proposed by the article for certain tasks,
or defined a new role per article depending on the proposed tasks that the fog system
fulfills. We iteratively reviewed all identified roles and their assigned tasks to aggregate
and standardize roles across cases and contexts. For instance, we re-named the role
“edge controller” to “edge manager” catering for the fact that assigned fog systems do
not only have the capability to control edge devices but also manage security activities.
We also identified optional tasks that a role can but does not have to fulfill. For the role
“smart support”, for example, we identified several proposed fog systems that also track
suspicious activities to identify and stop attacks and added this sub-task as optional to
the role. Overall, we found that a fog system usually fulfills one of six roles.

We also documented the use-case specifics of each role. For instance, we recognized
that a fog system fulfilling the role of “processing assistance” is rather used for use
cases with a stable data load and static system setup without any external entities to
join the system. Once loads become more volatile and emergency jobs appear that
require immediate processing (e.g., in smart power grids to control energy production
and consumption [6]), fog systems rather fulfill the role of “smart support” that includes
the prioritization and monitoring of edge and fog layer.

4 Fog Node Tasks

We uncovered four key tasks that fog nodes address: processing, orchestration, securing,
and networking. Table 1 summarizes the uncovered fog node tasks and sub-tasks. The
entire coding table can be accessed at: https://www.researchgate.net/publication/373194
959_Uncovering_Effective_Roles_and_Tasks_for_Fog_Systems.

Notably, for securing, we did not include basic security measures as sub-tasks, such
as an individual fog node running a firewall to ensure protection of each computing
resource in an untrusted network. We rather focused on fog nodes acting as dedicated
security enforcer for the entire IT system and performing advanced security operations
on top of basic security operations being always needed for operation.

Analogously, we did not include basic networking activities (e.g., one-time setup of
routers and switches to connect edge, fog and cloud in a semi-static way with fixed IP
addresses and (sub-) network affiliations) but focused on the networking sub-tasks to
enablemobility support of edge devices and fog nodes or optimization of networking. For
instance, if edge devices such as autonomous vehicles constantly move larger distances,
they connect to different base stations over time, thereby changing sub-networks. To keep
track of the location of a car and the routing path to reach it, fog nodes can monitor and

https://www.researchgate.net/publication/373194959_Uncovering_Effective_Roles_and_Tasks_for_Fog_Systems

Uncovering Effective Roles and Tasks for Fog Systems 125

Table 1. Fog node tasks and sub-tasks with a description and examples.

Task Sub-task Description Examples

Processing Offer
Software-as-a-Service
(SaaS) to process data

Process data and store
or forward the
outcomes (only the
data for processing is
submitted to the fog
node)

Sensors spread across
a city section send
traffic data to a fog
node for aggregation
and providing
recommendations to
autonomous vehicles
for preferred routes
[29]

Offer Platform- or
Infrastructure-as-a-Service
(PaaS/ IaaS) to process
virtualized jobs

Run containers and
VMs on demand and
follow flexibly defined
instructions (data and
instructions are
submitted to the fog
node)

Underutilized
autonomous vehicles
act as fog node with
virtualized resources
to flexibly fulfill end
user or other edge
device requests [30]

Orchestration Prioritize jobs from
different participants

Manage a queue of jobs
from different
participants, assess
criticality, and assign
jobs according to their
position in the queue

Central fog node
collects all processing
jobs in a smart
building, prioritizes
jobs according to their
criticality and assigns
the jobs to processing
fog nodes [31]

Administer resources of all
participants

Monitor all available
processing resources
from participants and
current and predicted
jobs, and distribute jobs
according to
quality-of-service
requirements

Central fog node
monitors the
utilization of all
participating fog
nodes in real-time to
assign jobs to
underutilized nodes or
outsource jobs to the
cloud if all fog nodes
are highly utilized [28]

(continued)

126 M. Blume et al.

Table 1. (continued)

Task Sub-task Description Examples

Securing Manage internal and
external attacks

Track traffic and
activities across the
system to prevent,
identify, and stop
malicious behavior and
external or internal
attacks

Central fog node
collects all traffic
across a city-wide fog
system and looks for
often repeating
requests to block
related IPs and prevent
DDoS attacks [32]

Manage identities of all
participants

Manage all devices,
nodes, users, etc. in
terms of their
registration,
authentication,
emergency control,
trust-management, etc

Central fog node hosts
a registry of
participating edge
devices, fog nodes,
and cloud services in
the fog system so that
every resource needs
to authenticate with
this node before it can
submit, e.g., a
processing request
[22]

Preserve data and location
privacy

Implement
mechanisms preserving
data/location privacy
across the fog system
with role-based
access-control and
encryption

Fog node encrypts
data from sensors
before sending it
through the internet to
processing fog or
cloud nodes [33]

Ensure non-repudiation and
immutable traceability

Host infrastructure to
track participants and
activities reliably and
consistently

Fog nodes host
distributed ledger and
mining infrastructure
to document each
transaction in the fog
system [34]

(continued)

Uncovering Effective Roles and Tasks for Fog Systems 127

Table 1. (continued)

Task Sub-task Description Examples

Networking Manage network
connections within and
adjacent to the fog system

Manage connections
among edge, fog, and
cloud resources
dynamically and
handle mobility of
nodes and the handover
of jobs (fog node acts
as a software-defined
networking controller)

Fog node tracks
mobile edge device
position and
movement and
informs adjacent fog
node in case there is an
ongoing job processed
by a fog node for the
edge device that need
to be handed over to
another node closer to
the device [35]

Distribute traffic within the
fog system

Monitor traffic across
the whole network and
optimize connections,
communication
strategy, and handovers
accordingly

Fog node continuously
assess the network
topology and related
traffic to optimize
routing paths towards
short distances and
low energy
consumption [21]

update routing tables and target addresses across the system. In addition, fog nodes can
predict the sub-network changes of edge devices and, in case of an ongoing processing
job from a moving edge device placed at a local fog node, prepare the handover of such
job to the next closest fog node of that edge device.

5 Fog System Roles

We structured six fog system roles in a hierarchy along the identified tasks and sub-tasks
(see Fig. 1). Each role represents a fog system that fulfills one or several tasks and related
sub-tasks (i.e., indicated by the width of a role´s bar in Fig. 1).

The structure is based on the logic that depending on the tasks a fog system fulfills,
a role is assigned. For example, if a fog system fulfills a sub-task from processing,
orchestration and securing, it does not take both the roles smart processing support and
security enforcer but only the role smart support. Roles thereby describe common sets
of (sub-) tasks that we identified in articles from our literature review. In the following,
we briefly describe each role, exemplary applications, and the use case conditions under
which the role can be effectively used for the fog system.

128 M. Blume et al.

Fig. 1. Fog system roles and related (sub-) tasks they consist of

5.1 Basic Fog System Roles

Processing Assistance. A fog system fulfilling the role processing assistance focuses
on the processing of data in a pre-defined way or processing of virtualized jobs (e.g.,
containers, VMs). Every fog node in the system supports one or several edge devices
and can also take over tasks from the cloud or end users. For example, a fog system can
support a smart city to locally process sensor data for the identification of immediate
threats with very low latency (e.g., [36, 37]). Potential implementations of processing
assistance reach from transformation of data into standardized formats for central nodes
to process the data [37] up to a multi-layer fog architecture in which lower nodes do
basic analyses and forward the data to higher level nodes for complex analyses [36].
Favorable use case conditions for the role processing assistance are constant data loads
and unchanging jobs together with low latency requirements that cannot afford any
prioritization or assignment steps of the data before it can be processed. Moreover,
processing assistance allows for a low-cost setup as all fog resources focus on processing
without overhead tasks such as the monitoring of resources or the prioritization of jobs.

Security Enforcer. To fulfill the role security enforcer, a fog system takes over one or
several advanced security-enhancing tasks to support edge devices. For instance, a fog
system can constantly monitor and filter traffic to detect suspicions IP addresses and
manage (DDoS) attacks [18] for a large number of connected IoT devices. Alternatively,
fog systems canmanage the identities and authentication for edge devices [38] or support
preserving privacy by encrypting data close to the edge [33]. By that, fog nodes take over
energy-consuming security tasks for energy-restricted edge devices and pool resources to
achieve higher cost-efficiency. Fog systems taking over advanced security tasks require
use cases with high security requirements (e.g., healthcare patient data) or a high risk
of significant damages if attacks are recognized too late or not mitigated (e.g., in IoT
production settings) while additional data processing or orchestrations capabilities are
not required at the edge.

Network Controller. The role network controller requires a fog system to manage
the mobility of edge devices that change networks over time or manage highly volatile
network loads. The former can include to track the location of devices, adapt routing
tables, and inform other network devices to update accordingly. Potential use cases
for fog systems as pure network controller include smart vehicle systems that require
location-aware fog nodes close to the vehicles to balance the network traffic and avoid

Uncovering Effective Roles and Tasks for Fog Systems 129

congestions [39]. In addition, local fog nodes can track and predict the movements of
edge devices and prepare for handover of processing support in the cloud if devices
are close to changing networks [35]. For the role network controller, fitting use cases
require a real-time coordination of moving devices and nodes without the need of further
processing or resource orchestration capabilities close to the edge.

5.2 Advanced Fog System Roles

Smart Processing Support. A fog system offering smart processing support does not
only process data or virtualized jobs but orchestrates jobs and available resources across
edge, fog, and cloud. Both processing and orchestration can be either done in the same
fog node or in separated nodes. Orchestration ranges from prioritizing, queuing, and
assigning of jobs up to the full monitoring of resources, load predictions and balancing
as well as resource spin ups and downs. Smart processing support can also include the
security assessment of submitted jobs before assignment to a processing fog node. A
smart processing support fog system is often proposed and implemented in closed but
volatile infrastructures such as (industrial) IoT (e.g., [40]) or small smart grids (e.g., [6]).
It can, for instance, manage cyber-physical power systems and both monitor the power
system to notify producers and consumers and orchestrate fog and edge resources [6].
With an overview of all resources, the fog system is able to prioritize tasks in case of
urgencies and allows for a better utilization of resources system-wide [28]. Assigning
the role smart processing support to a fog system is effective for use cases with more
resource-intensive and varying jobs as the fog nodes know the system status and can
assign jobs accordingly. In addition, at least the role smart processing support is required
in case highly latency- or safety-critical jobs need to be prioritized to avoid waiting times
before they can be processed. Further, the setup of a fog systemacting as smart processing
support with dedicated orchestration fog nodes fits use cases that need to scale fast. In
that case, new fog nodes can be easily connected with the orchestration node and start
operating faster compared to the role of processing assistance in which fog nodes are
assigned to a fixed number of edge devices so that the whole topology may need to be
changed if the system is scaled up.

EdgeManager. A fog system fulfilling the role edge manager extends the role of smart
support by also addressing tasks related to securing the system. However, the edge
manager does not always fulfill comprehensive securing tasks. Often, it either manages
identities, mitigates attacks, preserves privacy, or ensures traceability of activities. The
edge manager is applicable across many industries. For instance, a fog system proposed
by Núñez-Gómez et al. [41] hosts a distributed ledger setup for others to exchange
processing capacity. Such a fog system could be applied in smart cities, IoT, and other
settings that require to keep track of microtransactions with many stakeholders that post
and fulfill processing requests. A fog system acting as edge manager is effective for
use cases when a system becomes large and open with the necessity to have external
participants in the system with the need of low latency for administration. In that case,
the edge manager allows for a more dynamic and open system that can, for instance, add
or remove third-party devices, nodes, and users flexibly while being live. The additional
security measures also reduce risks if the fog system is allowed to control edge devices.

130 M. Blume et al.

Hub. As hub, fog systems additionally manage advanced networking tasks like the
handover of jobs for mobile edge devices or the dynamic distribution of traffic. A hub
often but not always fulfills sub-tasks to secure the fog system. Among them, a hub
mostly manages identities or ensures traceability. Smart vehicles are one of the key
use cases for the hub role as they are mobile per se with large data loads and low
latency requirements [7]. To implement a hub for smart vehicles, existing infrastructure
like roadside units can be enhanced to function as fog nodes for processing with an
overarching, city-wide node that manages the network [7, 42]. A hub is effective for use
cases that either include mobile edge devices or fog nodes or create extensive network
traffic and potential congestions. Being close to the devices with location awareness,
a hub can monitor and predict the devices’ positions as foundation for an effective
handover of processing jobs. Moreover, local fog nodes can collaboratively ensure up-
to-date routing tables for mobile devices so that these can be found anytime. In case
of high risks of harm by network congestions, a hub can identify and quickly react to
sharply increasing traffic by changing routes and data allocation.

6 Discussion

6.1 Principal Findings

We systematically derived four key tasks and ten sub-tasks for fog nodes from 105
articles. Based on often occurring sets of tasks and sub-tasks, we defined a hierarchy
with six roles that fog systems can fulfill to support edge devices and cloud services
depending on the use case. For each role, we were able to define use case characteristics
that point towards the necessity of such role for a fog system. For instance, once a use
case does not only entail a closed system (suitable for the roles processing assistance or
smart processing support) but also needs to accommodate for third party participants to
join or leave the fog system, fog nodes need to take over security-related tasks such as the
authentication of users, nodes, and devices. Accordingly, the fog system needs to either
fulfill the roles edgemanager or hub in that case to be effective. For simple use caseswith
constant loads, stable participants, etc., a fog system fulfilling the role of edge manager
or hub is feasible but may create too much overhead in organizing the system leading to
inefficiencies. Our hierarchical structure of roles (see Fig. 1) thereby indirectly indicates
not only the most effective role for a specific use case but also highlights further feasible
(roles that are above the one in focus in Fig. 1) and unfeasible ones (roles below the one
in focus in Fig. 1).

Among the six roles, processing assistance appeared themost in the analyzed articles
(n = 42), followed by hub (n = 18) and smart processing support (n = 15). With
processing assistance, related fog systems fulfill the general idea of fog to directly
support edge devices with additional processing close to the edge. It often requires a less
extensive architecture and generally fits more use cases than hub or smart processing
support. The role edgemanager only appears five times indicating that formore extensive
use cases, fog systems also take over networking tasks besides securing and rather act
as hub instead of only edge manager. Our review also indicates that the designated
roles for fog systems still mostly adhere to the initial idea of fog computing to act as

Uncovering Effective Roles and Tasks for Fog Systems 131

processing support for the edge because of the rather low number of articles proposing
the single-task roles security enforcer (n = 10) or network controller (n = 3). Further
tasks for fog systems beyond processing are rather a necessary support function to allow
fog nodes fulfilling more extensive use case requirements. Notably, reviewed literature
neglects proposing a fog system fulfilling the role orchestrator only.

Interestingly, within each role, there are distinct patterns for implementing a fog
systems. For instance, articles proposing a fog system fulfilling the role smart processing
support either apply a centralized (e.g., [21, 43]) or decentralized orchestration (e.g., [40,
44]). Centralized orchestration describes a topology in which one or a few central fog
nodes are connected to the edge devices to collect all their processing requests and assign
them to available fog nodes on a higher layer. Decentralized orchestration foresees that
each fog node is connected to several edge devices, directly receives their processing
requests, and only tracks their own utilization and that of adjacent fog nodes. In case of
local bottlenecks, fog nodes communicate with adjacent nodes to shift jobs among them.
Similar patterns can be found for processing assistance. They can be distinguished into
single-layer fog systems that can efficiently address homogeneous jobs fromedgedevices
(e.g., [45]) ormulti-layer fog systemswithmore flexibility to address heterogeneous jobs
(e.g., [46]). These implementation patterns further substantiate the need to design fog
systems according to a specific role taken.

6.2 Implications for Research and Practice

This study uncovers and standardizes four key tasks and ten related sub-tasks that fog
nodes can perform in a fog system.Weprovide descriptions and example implementation
references for each (sub-) task and therefore guide future research examining the useful
application of fog computing for certain use cases. Second, extending recent research
examining fog roles (e.g., [4, 12]), we were able to uncover six industry-agnostic roles
that a fog system can take to fulfill use case requirements and objectives. We describe
each role with a definition, example implementations, and use-case conditions for an
effective application of each role. Third, prior research on fog roles mostly structured fog
systems according to the industry they were applied in (e.g., [13]), and did not examine
generalizability of roles’ facets and the applying fog system. Rather than focusing on
industries, we took an overarching, use-case-specific perspective examining effective
sets of fog tasks. With that, we were able to define a hierarchy of tasks and roles that
supports to organize fog systems according to their similarity. Researchers can use the
hierarchy to ground the development of new fog systems on similar systems to improve
its design. With this study, we thereby help to mitigate the problem of inconsistent
descriptions of fog applications with a low maturity and standardization, raised by prior
research (e.g., [5]). For the design of new fog systems, practitioners and researchers
can leverage the hierarchy and the recommendations for fog system roles depending on
use case requirements to systematically select the appropriate role and related (sub-)
tasks for their use case. Since each role requires different system design decisions, our
work provides the foundation for developing role-specific system design patterns for
fog computing. Finally, for both researchers and practitioners, our hierarchy with (sub-)
tasks and roles proposes a standardized terminology of fog systems counteracting the
prevalent conceptual ambiguity around fog computing [9].

132 M. Blume et al.

6.3 Limitations and Future Research

Our study is subject to limitations, paving the way for future research. As our research
is based on an extensive literature review with 105 articles and 227 activities coded, we
develop our fog task-role hierarchy solely on extant literature without further validation
of the results. The literature coding was also conducted mostly by one author, posing
the risk of subjective researcher bias. We addressed this limitation by discussing and
iterating our results among the team of authors supported by informal discussions with
practitioners to indicate the validity and usefulness of our task-role hierarchy. Further
research on this topic could include the validation of our results with expert interviews.
Another limitation of our research is grounded on the selection of relevant literature. As
indicated by overarching surveys, fog computing can be clearly defined anddistinguished
from other computing paradigms (e.g., [4, 9]). In practice and research though, articles
that would fit our definition of fog are published as edge, mist, or mobile computing,
limiting our research to a subset of all potentially relevant fog system articles. However,
all articles in scope of our research share a similar definition of fog and focus on novel use
cases, ensuring that we analyzed theoretically consistent systems. Further research may
investigate into specifics of roles for fog and related paradigms.Another promising future
research direction based on the principal findings emerges from the identification of fog
system implementation patterns within individual roles. Diving deeper into each role and
related patterns could allow to develop best practices for the technical implementation
of use-case specific fog systems.

6.4 Conclusion

With fog systems being placed between the edge and cloud, they not only impose signif-
icant opportunities for IT architects and system designers but also challenge an effective
system setup. The multitude of different (sub-)tasks that fog nodes can take over creates
burden on the designers to select and combine tasks to fulfill their use case objectives
and requirements. We reviewed the extensive body of knowledge on fog computing to
uncover common tasks, map them to roles, and develop a task-role hierarchy for fog
systems. We contribute to the informed decision of a role for a specific fog system with
our task-role hierarchy that allows to categorize existing fog systems and assign effective
roles and respective tasks for new fog systems.

References

1. Bonomi, F., Milito, R., Zhu, J., et al.: Fog computing and its role in the internet of things. In:
Gerla, M., Huang, D. (eds.) Proceedings of the first edition of the MCC workshop on Mobile
cloud computing - MCC 2012, p. 13. ACM Press, New York, NY, USA (2012)

2. Singh, J., Singh, P., Gill, S.S.: Fog computing: A taxonomy, systematic review, current trends
and research challenges. J. Parallel Distrib. Comput. 157, 56–85 (2021)

3. Hassler, M.: NURON – THE COMPLETELY NEW CORDLESS PLATFORM WITH
BUILT-IN CONNECTIVITY (2022). https://www.hilti.group/content/hilti/CP/XX/en/com
pany/media-relations/media-releases/Nuron.html. Accessed 11 Jan 2022

4. Naha, R.K., Garg, S., Georgakopoulos, D., et al.: Fog computing: survey of trends,
architectures, requirements, and research directions. IEEE Access 6, 47980–48009 (2018)

https://www.hilti.group/content/hilti/CP/XX/en/company/media-relations/media-releases/Nuron.html

Uncovering Effective Roles and Tasks for Fog Systems 133

5. Habibi, P., Farhoudi, M., Kazemian, S., et al.: Fog computing: a comprehensive architectural
survey. IEEE Access 8, 69105–69133 (2020)

6. Wang, H., Wang, Q., Li, Y., et al.: Application of fog architecture based on multi-agent
mechanism in CPPS. In: 2018 2nd IEEE Conference on Energy Internet and Energy System
Integration (EI2), pp. 1–6 (2018)

7. Cao, B., Sun, Z., Zhang, J., et al.: Resource allocation in 5G IoV architecture based on SDN
and fog-cloud computing. IEEE Trans. Intell. Transport. Syst. 22, 3832–3840 (2021)

8. Fraga-Lamas, P., et al.: Design and empirical validation of a Bluetooth 5 fog computing based
industrial CPS architecture for intelligent industry 4.0 shipyard workshops. IEEE Access 8,
45496–45511 (2020). https://doi.org/10.1109/ACCESS.2020.2978291

9. Yousefpour, A., Fung, C., Nguyen, T., et al.: All one needs to know about fog computing and
related edge computing paradigms. J. Syst. Architect. 98, 289–330 (2019)

10. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future direc-
tions. In: Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A. (eds.) Internet of Everything. IT,
pp. 103–130. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5861-5_5

11. Ahmed, A., Arkian, H., Battulga, D., et al.: Fog Computing Applications: Taxonomy and
Requirements (2019). http://arxiv.org/pdf/1907.11621v1

12. Nath, S.B., Gupta, H., Chakraborty, S., et al.: A survey of fog computing and communication:
current researches and future directions (2018). https://arxiv.org/abs/1804.04365

13. Mouradian, C., Naboulsi, D., Yangui, S., et al.: A comprehensive survey on fog computing:
state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20, 416–464 (2018)

14. Chatterjee, S., Sarker, S., Lee, M.J., et al.: A possible conceptualization of the information
systems (IS) artifact: a general systems theory perspective. Inf. Syst. J. 31, 550–578 (2021)

15. Iorga, M., Feldman, L., Barton, R., et al.: Fog computing conceptual model (2018). https://
www.nist.gov/publications/fog-computing-conceptual-model

16. Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog. SIGCOMM Comput.
Commun. Rev. 44, 27–32 (2014)

17. Blume, M., Lins, S., Sunyaev, A.: Understanding Interdependencies among fog system char-
acteristics. In: 2022 IEEE 24th Conference on Business Informatics (CBI), Amsterdam,
Netherlands, pp. 126–135 (2022)

18. Qusa, H., Tarazi, J.: Collaborative fog computing architecture for privacy-preserving data
aggregation. In: 2021 IEEE World AI IoT Congress (AIIoT), pp. 86–91 (2021)

19. Veeramanikandan,M., Sankaranarayanan, S.: Publish/subscribe broker based architecture for
fog computing. In: 2017 International Conference onEnergy, Communication,DataAnalytics
and Soft Computing (ICECDS), pp. 1024–1026 (2017)

20. Razouk,W., Sgandurra, D., Sakurai, K.: A new security middleware architecture based on fog
computing and cloud to support IoT constrained devices. In: Proceedings of the 1st Interna-
tional Conference on Internet of Things and Machine Learning. Association for Computing
Machinery, New York, NY, USA (2017)

21. Ma, K., Bagula, A., Nyirenda, C., Ajayi, O.: An IoT-based fog computing model. Sensors
19(12), 2783 (2019). https://doi.org/10.3390/s19122783

22. Kim, W., Chung, S.: User-participatory fog computing architecture and its management
schemes for improving feasibility. IEEE Access 6, 20262–20278 (2018)

23. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature
review. MIS Q. 26, 8–28 (2002)

24. vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., Cleven, A.: Standing on
the shoulders of giants: challenges and recommendations of literature search in information
systems research. Commun. Assoc. Inf. Syst. 37, 9 (2015). https://doi.org/10.17705/1CAIS.
03709

25. Hao, T., Han, S., Chen, S., et al.: The role of fog in haze episode in Tianjin, China: a case
study for November 2015. Atmos. Res. 194, 235–244 (2017)

https://doi.org/10.1109/ACCESS.2020.2978291
https://doi.org/10.1007/978-981-10-5861-5_5
http://arxiv.org/pdf/1907.11621v1
https://arxiv.org/abs/1804.04365
https://www.nist.gov/publications/fog-computing-conceptual-model
https://doi.org/10.3390/s19122783
https://doi.org/10.17705/1CAIS.03709

134 M. Blume et al.

26. Roy, D., Dutta, S., Datta, A., et al.: A cost effective architecture and throughput efficient
dynamic bandwidth allocation protocol for fog computing over EPON. IEEE Trans. Green
Commun. Netw. 4, 998–1009 (2020)

27. Lacity, M.C., Khan, S.A., Willcocks, L.P.: A review of the IT outsourcing literature: insights
for practice. J. Strateg. Inf. Syst. 18, 130–146 (2009)

28. Taherizadeh, S., Stankovski, V., Grobelnik, M.: A capillary computing architecture for
dynamic internet of things: orchestration of microservices from edge devices to fog and
cloud providers. Sensors 18, 2938 (2018)

29. Datta, S.K., Bonnet, C., Haerri, J.: Fog computing architecture to enable consumer centric
Internet of Things services. In: 2015 International Symposium on Consumer Electronics
(ISCE), pp. 1–2 (2015)

30. Mekki, T., Jabri, I., Rachedi, A., et al.: Towardsmulti-access edge based vehicular fog comput-
ing architecture. In: 2018 IEEEGlobal Communications Conference (GLOBECOM), pp. 1–6
(2018)

31. Seitz, A., Johanssen, J.O., Bruegge, B., et al.: A fog architecture for decentralized decision
making in smart buildings. In: Proceedings of the 2nd International Workshop on Science of
Smart City Operations and Platforms Engineering, pp. 34–39, New York, USA (2017)

32. Sundarakantham, K., Shalinie, S.M., Prabavathy, S.: Design of cognitive fog computing for
intrusion detection in Internet of Things. J. Commun. Netw. 20, 291–298 (2018)

33. Zhang,H., Qin, B., Tu, T., et al.: An adaptive encryption-as-a-service architecture based on fog
computing for real-time substation communications. IEEE Trans. Industr. Inf. 16, 658–668
(2020)

34. Mayer, A.H., Rodrigues, V.F., de Costa, C.A., et al.: FogChain: a fog computing architecture
integrating blockchain and internet of things for personal health records. IEEE Access 9,
122723–122737 (2021)

35. Valentini, E.P., Lieira, D.D., Nakamura L.H.V. et al.: MOMMA: a flexible architecture based
on fog computing for mobility management. In: 2018 IEEE Symposium on Computers and
Communications (ISCC), pp. 964–969 (2018)

36. Tang, B., Chen, Z., Hefferman,G., et al.: A hierarchical distributed fog computing architecture
for big data analysis in smart cities. In: Proceedings of the ASE BigData & SocialInformatics
2015, New York, NY, USA (2015)

37. Rampérez, V., Soriano, J., Lizcano, D.: A multidomain standards-based fog computing archi-
tecture for smart cities. Wirel. Commun. Mob. Comput. 2018, 1–14 (2018). https://doi.org/
10.1155/2018/4019858

38. Barik, R.K., Dubey, H., Mankodiya, K.: SOA-FOG: secure service-oriented edge computing
architecture for smart health big data analytics. In: 2017 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), pp. 477–481 (2017)

39. Khan, A.A., Abolhasan, M., Ni, W.: 5G next generation VANETs using SDN and fog com-
puting framework. In: 2018 15th IEEE Annual Consumer Communications & Networking
Conference (CCNC), pp. 1–6 (2018)

40. Ungurean, I., Gaitan, N.C.: Software architecture of a fog computing node for industrial
internet of things. Sensors 21, 3715 (2021)

41. Núñez-Gómez, C., Caminero, B., Carrión, C.: HIDRA: a distributed blockchain-based
architecture for fog/edge computing environments. IEEE Access 9, 75231–75251 (2021)

42. Zhang, W., Zhang, Z., Chao, H.-C.: Cooperative fog computing for dealing with big data in
the internet of vehicles: architecture and hierarchical resource management. IEEE Commun.
Mag. 55, 60–67 (2017)

43. Madumal, M.B.A.P., Atukorale, D.A.S., Usoof, T.M.H.A.: Adaptive event tree-based hybrid
CEP computational model for Fog computing architecture. In: 2016 Sixteenth International
Conference on Advances in ICT for Emerging Regions (ICTer), pp. 5–12 (2016)

https://doi.org/10.1155/2018/4019858

Uncovering Effective Roles and Tasks for Fog Systems 135

44. Hassan, S.R., Ahmad, I., Nebhen, J., et al.: Design of latency-aware iot modules in
heterogeneous fog-cloud computing networks. Comput. Mater. Continua. 70, 6057–6072
(2022)

45. Abbas, A., Asghar, A., Khattak, H.A., et al.: Fog based architecture and load balancing
methodology for health monitoring systems. IEEE Access 9, 96189–96200 (2021)

46. Souza, A., Izidio L., Rocha, A., et al.: Sapparchi: an architecture for smart city applications
from edge, fog and cloud computing. In: 2019 IEEE International Smart Cities Conference
(ISC2), pp. 262–267 (2019)

Cooperative Virtual Machine Placement

José G. Quenum1(B) and Samir Aknine2

1 Namibia University of Science and Technology, Windhoek, Namibia
jquenum@nust.na

2 Université Claude Bernard - Lyon 1, Lyon, France

samir.aknine@univ-lyon1.fr

Abstract. Server virtualisation has played a preponderant role in cloud
computing success todate. It controls hardware resource access and man-
agement for computing, storage and networking in cloud environments.
There have been several approaches for virtual machine placement based
on reinforcement learning, bin packing, game theory, multi-objective non-
linear optimisation and other heuristics. This paper proposes a cooper-
ative virtual machine (VM) placement approach based on commitments
made in a prior coalition formation phase. Based on these commitments
and the availability of resources, we use a heuristic to place new VMs.
Using the coalition structure, we narrow the space for candidates dur-
ing a placement, reducing the computation cost of a VM placement. We
evaluated our approach and compared it to existing methods.

Keywords: Virtual Machine Placement · Coalition Formation ·
Resource Allocation

1 Introduction

The success of cloud computing in recent years is attributable to several tech-
nological developments, including virtualisation [16]. It creates an abstraction
layer over physical hardware resources to increase the scalability of systems and
reduce the cost of their underlying infrastructure. There are generally three
types of virtualisation technologies: full virtualisation, which uses a hypervisor
(e.g., Xen [3], KVM and VMware ESX [17]), to manage and monitor access to the
hardware resources; para virtualisation, where the host operating system (OS)
is modified to inter-operate with the hypervisor through hypercalls, and finally,
host virtualisation.

One of the functions a hypervisor fulfils is to allocate hardware resources to
newly spawned VMs and monitor their usage. This research focuses on three
types of resources: CPU and memory for computationally intensive workloads
and secondary storage (e.g., disk) for I/O-intensive workloads. Virtualisation
resource allocation (VM placement) addresses the issue of mapping the hardware
resources on a physical machine (PM) to the workloads in a VM or transferring
the VM from one PM to another when the source PM is under or over-utilised.

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 136–150, 2023.
https://doi.org/10.1007/978-3-031-46235-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_9

Cooperative Virtual Machine Placement 137

It uses different variants of scheduling (and load balancing) algorithms [2]. A VM
is often created to execute one or several tasks, resulting in one of the following
workloads: burst, batch, IO- and CPU-intensive. Hypervisors must provision and
allocate hardware resources to enable VMs to use various strategies to execute
their tasks. For example, VMware ESX uses a resource commitment strategy (e.g.,
memory overcommit for memory allocation), while Hyper V uses a dynamic allo-
cation (e.g., dynamic memory) based on the actual resource usage by the exist-
ing VMs. Despite all these fine-grained allocation strategies, when the physical
resources dwindle within a hypervisor, the execution slows down, or an increased
latency can be observed. As a workaround and to guarantee that the resources
will be available when needed, some hypervisors may lease their spare resources
at a discount price (e.g., spot instance in EC2, low-priority VM in Azure and
preemptible and spot VMs in Google Computing Engine). We argue that one
approach to enhance these techniques is to extend the resource allocation to
several hypervisors and place the VM in the adequate host(s) when needed.
Several VM placement or migration algorithms have been proposed in the past
with techniques ranging from bin packing and related heuristics (see [7]) to var-
ious predictive schemes (queueing theory, Markov models, ensemble techniques,
see [13]) and other metaheuristics and optimisation techniques (see [9,18]).

A VM placement mechanism should fulfil several objectives, including max-
imizing the profitability for the infrastructure provider (e.g., cloud provider),
guaranteeing a level of performance for the user based on an agreed-upon ser-
vice level agreement (SLA), and ensuring energy efficiency, reliability and locality
within a VM. Dynamic VM placement algorithms face an additional challenge;
the new host identification should complete fast to allow a timely execution of
the user request. Our intuition in this paper is to reduce the computation time of
the VM placement by narrowing the search space using a coalition structure built
from a prior negotiation among the agents (hypervisors). A coalition structure
is a partition of the complete set of agents into different groups. Each group, a
coalition, represents a set of agents committed to cooperating for resource shar-
ing when the need arises. When a user submits a new request to the system, and
the agent the request is addressed to fails to allocate the necessary resources,
we start two parallel processes. The first one searches for a suitable host among
the coalition members, while the second looks for a host outside the coalition.
The second process is stopped as soon as a host is found among the coalition
members. From a list of candidates (hosts with available resources), a suitable
host has the least amount of available resources. We assume that coalitions are
generally of reasonable size, which searches for a host faster.

The remainder of the paper is structured as follows. Section 2 presents
our coalition formation mechanism, while Sect. 3 discusses our VM placement
method. Section 4 discusses an evaluation of our approach. The related work
is discussed in Sect. 5. Finally, Sect. 6 concludes the paper and presents future
directions.

138 J. G. Quenum and S. Aknine

2 Coalition Structure for Virtual Machine Placement

The value of a coalition depends on the agreements between its members, i.e.,
the sum of the hardware resources they can share. Thus, before the coalition
formation, we ran an automated negotiation between the hypervisors (agents).

2.1 Automated Negotiation

The automated negotiation algorithm is a multilateral negotiation. However,
because eventually the commitments are bilateral1, we implement our negoti-
ation protocol as a collection of independent2 time-bounded bilateral negoti-
ations. The domain of each negotiation is the set of hardware resources that
agents can share. A portion of the hardware resources at an agent’s disposal is
reserved for sharing to foster cooperation. Moreover, our approach focuses on
computationally-intensive workloads, which consume more CPU and memory,
and I/O-intensive workloads, which consume more storage. As such, during the
negotiations, the offers and counter-offers organise resources in two packages: P1
for computationally-intensive tasks and P2 for I/O-intensive ones.

An agent A is represented as a tuple < P,R, R̂,G, Ā,
◦
A > where P (Pref)

represents the preferred package (P1 or P2) of the agent, R (Resources) represents
all the resources available to the agent and how much it can share with other
agents, R̂ (Reserved) represents the resources to be shared with other agents, G
(Guarantees) represents the resources other agents will share with the agent, Ā
(Agreements) represents all final agreements reached after the negotiations, and
◦
A (Allocations) corresponds to the resources allocated during the execution.

Algorithm 1 details the negotiation protocol. It uses several primitives, which
we highlight here. The send primitive delivers messages from one agent to
another, while the fetch message primitive fetches new messages from an agent’s
message queue. The generate request primitive creates a new message whose
content is a request, a special message content that indicates for each pack-
age the requested shareable percentage (an offer of some sort) and the dead-
line of the subsequent negotiation. Similarly, generate counter offer produces a
new message of type counter offer. The content of the message specifies the
revised percentage of resources that the agent is ready to share at that point
of the negotiation. For an agent handling a message during the negotiation, the
update agreements primitive updates the Agreements attribute of the agent by
recording a new agreement, a tuple containing the shareable percentage for each
package, the direction of the commitment (provider or consumer), and the other
agent involved in the negotiation. Moreover, the initiator of a negotiation uses the
evaluate and reply primitive to evaluate a counteroffer and decides whether to
accept it or not. The has capacity and pref primitive checks whether a negotia-
tion participant has the required resources and the suitable package preference to
1 This is due to how the placement and migration algorithms are currently set up.
2 Although these bilateral negotiations run independently, there is a limit to the

resources they can commit to sharing.

Cooperative Virtual Machine Placement 139

Algorithm 1. Negotiation Protocol
Input: Initiator //Initiator of the negotiation

Input: Agents // List of agents

Output: Agreements
1 initiate negotiation(Initiator,Agents)
2 while true do
3 handle message(Initiator)

4 return Agreements
5

6 Function initiate negotiation(initiator, agents)
7 req := generate request(initiator)
8 pending := agents
9 repeat

10 send(req, select provider(agents, pending))
11 until pending = ∅
12

13 Function handle message(initiator)
14 msg := fetch message()
15 agent := msg.destination
16 if agent = initiator then
17 if msg.type = accept then
18 update agreements(msg)
19 else
20 if msg.type = counter offer then
21 evaluate and reply(msg)

22 else
23 if expired(msg) then
24 send(reject, initiator)
25 else
26 if has capacity and pref (msg, agent) then
27 send(accept, initiator)
28 update agreements(msg)

29 else
30 c offer = generate counter offer()
31 send(c offer, initiator)

accommodate a request. Finally, the select provider primitive selects a potential
participant which has not been contacted yet to initiate a negotiation. To initi-
ate a negotiation (see Algorithm 1, lines: 6–11), an agent acting as a consumer
issues a request to each potential provider, asking the provider to commit to a
fraction of its shareable resources. For example, for a consumer Aı, the request

140 J. G. Quenum and S. Aknine

looks as follows: reqAı = (P1 : 10.0; P2 : 20.3; deadline : 10000). This request
indicates that Aı expects a provider evaluating the request to commit 10% of
its shareable CPU and memory and 20.3% of shareable storage resources. The
deadline3 of the negotiation, or at least the response from the provider, is due in
10min. Once a negotiation is initiated, the initiator or an agent participating in
the negotiation monitors its message queue and handles incoming messages. The
handle message function (lines 13–31) fulfils that functionality. When an agent
Aj receives the message reqAı , it takes one of the following decisions: (1) if the
deadline of the negotiation has elapsed, it rejects the request; (2) if the agent can
accommodate the request and is willing to, it accepts the request and updates
its commitments (Reserved attribute); (3) if, due to prior commitments, she
cannot share any more resources, it rejects the request; (4) if not, it makes a
counteroffer about the fraction it can provide. If the response to the request is a
reject, Aı ends the negotiation for both participants. If, on the contrary, it is
an accept, Aı updates its Guarantees and Agreements attributes and ends the
negotiation for both participants. Finally, with a counter-offer, Aı evaluates
the messages and accepts, rejects or carries on by making another counteroffer.

In short, a rejected offer ends the bilateral negotiation. Similarly, an accepted
offer concludes the negotiation, with both participants updating their agree-
ment lists. Finally, during the time set for the negotiation, alternating offers are
exchanged by both parties to reach a possible agreement. Once all bilateral nego-
tiations are completed, we use the agreements reached by the agents to group
them optimally.

Although the initial request in a bilateral negotiation starts with a random
offer, the rationality of the overall negotiation lies in the fact that the evaluation
of the request is based on the provider’s current capabilities. Furthermore, when
the provider makes a counteroffer, it is accepted or rejected since the consumer
assumes that the value in the counter offer reflects the actual capabilities of the
agent.

By way of example, we use a set of ten agents whose resources, including
shareable resources (S*), are presented in Table 1. Figure 1 depicts the agree-
ments the agents reached after the negotiation phase. For example, MLion agreed
to share its storage with WWolf (3.0%) and GEagle (4.0%). Similarly, Boar agreed
to share 15.0% of its CPU and memory with WWolf and expects 8.0% of storage
from AFox.

3 Note that we use a physical clock value for the sake of simplicity in this example.
Actually, due to the distributed nature of our algorithm, we use a time limit and a
vector clock (logical clock).

Cooperative Virtual Machine Placement 141

Table 1. Ten-Agent Example

Name P1 P2

cpu memory S* storage S*

GEagle 10000 256 10.0 30000 11.0

MLion 35000 1024 25.0 7000 7.0

SLeopard 44000 4096 10.5 96000 9.5

Hyaena 15000 512 12.0 96000 11.0

SWolf 35000 2048 12.0 70000 7.0

WWolf 70000 8192 7.0 96000 12.0

AMuskox 35000 256 6.0 70000 8.0

PBear 48000 512 9.0 96000 10.9

AFox 57000 4096 14.0 96000 12.0

Boar 70000 4096 15.0 96000 10.0

Fig. 1. Negotiation agreements

2.2 Optimal Coalition Structure

A coalition represents a group of agents constituted to allow these agents to
coordinate and cooperate in the execution of several complex tasks [15]. The
partition of the set of agents into exhaustive and disjoint coalitions in order to
maximise the overall outcome is a coalition structure. More formally, let A =
{A1,A2, . . . ,An} be the set of agents and v be a characteristic function4 (v :
2A → R), a coalition structure over A is a set {C1,C2, . . . ,C�} such that:

Cı �= ∅ · Cı ∩ Cj = ∅ ·
�⋃

ı=1

Cı = A with ı and j ∈ {1, 2, . . . , �}.

Our optimal coalition structure generation is derived from the ODSS algorithm
presented in [5]. More specifically, our algorithm focuses5 on the IDP part of the
method presented in [5].

Our characteristic function assigns to each coalition Cı the sum of the
values of the resources shared by its members, i.e., determines the quantity
4 v assigns a utility value to a coalition of agents in A.
5 Although data centres may employ multiple hypervisors, their number is not as high

as the number of agents used in a typical coalition formation problem.

142 J. G. Quenum and S. Aknine

Algorithm 2. Optimal Coalition Structure Generation
Input: Agreements // All agreements

Input: Agents // List of agents

Output: CS∗ //Optimal coalition structure

1 n := size(Agents)
2 for ı = 2 to 2n

3
do

3 improve coalitions(Agents, ı)

4

5 foreach C′′ ⊂ Agents ∧ size(C′′) ∈ [1, n
2
] do

6 if v(C′′) + v(Agents \ C′′) > v(Agents) then
7 // Update grand coalition

8 v(Agents) := v(C′′) + v(Agents \ C′′)

9 CS∗ := select optimal coalition structure()
10 return CS∗

11

12 Function improve coalitions(agents, coal size)
13 for C ⊂ agents do
14 if size(C) = coal size then
15 sC := size(C)
16 for C′ ⊂ C ∧ size(C′) ∈ [1, sC

2
] do

17 if v(C′) + v(C \ C′) > v(C) then
18 //Update coalition C’s value

19 v(C) := v(C′) + v(C \ C′)

corresponding to the shared fraction for each type of resource and applies a unit
price to extract the value.

Algorithm 2 summarises our optimal coalition structure generation. In Algo-
rithm 2, the size primitive returns the size of a set: the number of its elements.
As well, the select optimal coalition structure primitive evaluates all coalition
structures and selects the optimal one.

Algorithm 2 follows three steps. In the first step (lines 2–3), for each coalition
Cı of size ranging between 2 and 2n

3 , we split the coalition if doing so improves
its value (see the improve coalitions function (lines 12–19)):

∃Cj ⊂ Cı, 1 ≤ |Cj| ≤ |Cı|
2

, v(Cj) + v(Cı \ Cj) > v(Cı).

In the second step (lines 5–8), for any coalition whose size does not exceed half
of the grand coalition (A) size, we split A if doing so improves its utility:

∀C,C ⊂ A, 1 ≤ |C| ≤ |A|
2

, v(C) + v(A \ C) > v(A).

Cooperative Virtual Machine Placement 143

Finally, in the third step, we select the optimal coalition structure. To this end,
we generate and evaluate the partitions based on the updated values. Then, we
select the complete set of partitions with the highest value.

Following the example discussed in Sect. 2.1, the coalition structure generated
by applying Algorithm 2 is as follows: {{AMuskox, SLeopard, Boar, Hyaena,
Wwolf, SWolf}, {MLion, PBear, GEagle, AFox}}.

3 Virtual Machine Placement

The VM placement algorithm aims to identify which agent is best suited to host a
VM given its current needs (in terms of workload). We use a request symbolising
a demand for new hardware resources (CPU, memory and storage) to represent
a workload. A request is addressed to an agent and may result in spawning a
new VM or extending the hardware resources allocated to an existing VM. We
consider three options: (1) the agent to which the request is addressed has the
capacity and, therefore, handles the request; (2) if not, we turn to the members
of the agent’s coalition and select one that does not violate its commitments;
(3) finally, if no member of the coalition can host the placement, we turn to
the rest of the agents, looking for one with enough resources without violating
its commitments. In our approach, we consider two scenarios: handling a single
request and clustering multiple requests to be handled in bulk.

When an agent receives a request, we first check if the agent has the capacity
to allocate the resources, i.e., the agent has the CPU, memory and storage
resources required for the request. When the agent does not possess the required
resources, we use a three-dimensional6 bin packing algorithm [4,19] to determine
which other agent should fulfil the request and host the related VM. Bin packing
belongs to the family of multi-dimensional, multi-container packing problems.
Given a set H of agent (hypervisor) type, each with a cost c� and a variable
capacity (or hardware resources) W�. Given a set R of workload requests, each
with a weight ωı. The purpose is to allocate n request items to many agents
such that the sum of the costs of the agent types is minimised. We formulate the
variable-size multi-dimensional bin packing problem in Eq. (1). The equation
includes two variables: xıj and yj�. xıj indicates whether a request ı is allocated
to agent j. Furthermore, yj� determines if agent j is of type �.

6 The three dimensions represent the attributes of a request: cpu, memory and storage.

144 J. G. Quenum and S. Aknine

min
n∑

j=1

m∑

�=1

c� · yj�

s.t.
n∑

j=1

xıj = 1 for ı = 1, . . . , n

m∑

�=1

yj� ≤ 1 for j = 1, . . . , n

n∑

ı=1

ωı · xıj ≤
m∑

�=1

W� · y�j for j = 1, . . . , n

xıj ∈ {0, 1} for ı, j = 1, . . . , n

yj� ∈ {0, 1} for j = 1, . . . , n and � = 1, . . . , m

(1)

Algorithm 3 summarises our bin packing algorithm. It uses the online best-
fit heuristic [8]. The latter selects the agent with the tightest capacity (the
least available resources) when possible. To improve the performance of our bin
packing algorithm, we use a binary search tree (an AVL tree [1]), where we store
the agents ordering (in increasing order) them based on their available resources.
In Algorithm 3, the violate commitment primitive determines whether allocating
the request to an agent violates the agreements it reached during the negotiation,
factoring in the allocations done by the agent so far. From lines 2–3, the algorithm
tries to allocate the resources to the addressee. If unsuccessful, it then looks for
a host among the coalition members (lines 6–15). When both options fail7, the
algorithm attempts a placement outside the coalition (lines 17–26). When the
host is a coalition member or an agent outside the coalition, and a prior VM
was previously spawned to handle the workload, there is a need to migrate the
VM (see Le [11]). As an illustration of Algorithm 3, we submitted the request
W1

req = (CPU : 100, memory : 85, storage : 65) 100 times to agent Hyaena. After
the agent handled the first five requests, all subsequent requests were handled
by members of its coalition: {SWolf, AMuskox, SLeopard, Boar}. An important
observation made during this experiment is as follows. If all the requests were
different workloads of the same initial VM, the VM would be migrated from one
hypervisor to another. However, some of these workloads, although running on
the same VM, might be independent. As such, there is a need for a finer-grained
migration policy. For example, a migration could occur only when a workload
is related to a running process that can no longer be executed on a VM due to
resource limitations. This, in turn, implies that a VM could exploit hardware
resources from different hypervisors. A smart migration policy could coordinate
this transfer until the workloads stabilise.

7 In fact, the non coalition part is processed in parallel to the coalition part and will
be cancelled when a coalition member is found.

Cooperative Virtual Machine Placement 145

Algorithm 3. Virtual Machine Placement
Input: Agents // List of agents

Input: Coal //Coalition of the addressee

Input: Addressee // Agent

Input: Req // Request

Output: Host∗ // Placement host

1 Host = nothing
2 if has capacity(Addressee,Req) then
3 Host∗ := Addressee
4 else
5 th1 := START process non coal(Agents,Coal,Req)
6 coal avl := generate bst(Coal \ {Addressee})
7 coal size := |coal avl|
8 for rk = 1 to coal size do
9 ag := coal avl[rk]

10 if has capacity(ag,Req) ∧ ¬violate commitment(ag,Req) then
11 Host∗ := ag
12 STOP th1

13 break

14 else
15 continue

16 return Host∗

17 Function process non coal(all agts, coal, req)
18 coal avl1 := generate bst(all agts \ coal)
19 coal size1 := |coal avl1|
20 for rk1 = 1 to coal size1 do
21 ag1 := coal avl1[rk1]
22 if has capacity(ag1, req) ∧ ¬violate commitment(ag1, req) then
23 return ag1

24 else
25 continue

26 return nothing

27

28 Function has capacity(ag, req)
29 return ag.resources > ag.allocations + req

30

31 Function generate bst(agents)
32 avlt := new AV LTree{Agent,Float}()
33 for ag ∈ agents do
34 insert(avlt, (ag, evaluate capacity(ag)))

35 return avlt

36

146 J. G. Quenum and S. Aknine

When multiple requests are sent to an agent, we introduce a beam search
heuristic to address these limitations. First, the requests are sorted from largest
to smallest. For each agent type (based on its capacity), we define several subsets
of the requests that can be allocated to it. We then evaluate the subsets and
choose the one with the highest cluster of requests. We proceed with the next
agent type until all the requests have been fulfilled. Different strategies can be
considered for selecting the agent type. For example, select the least tight agent
type, i.e., randomly select an agent among those with the highest capacity.

The energy consumption of the VM placement can be modelled following
Chinprasertsuk and Gertpol [6]. There are two possible outcomes for the VM
placement procedure. The energy consumption is limited to the computational
load of Algorithm 3, or it involves an additional cost for transferring the VM.
Energy quantification in a data centre is a rather complex task. It does not
just focus on the energy drawn by the computational tasks. It also involves the
cooling system, the energy used while the equipment is idle. For the sake of
simplicity, we will assume here that these additional quantities represent a con-
stant. A more fine-grained analysis could consider the cooling energy as a factor
of the computational load. Equation (2) presents the power draw during the VM
placement with no migration8. In Eq. (2), ϑ represents a constant that includes
the power draw during idle time and other activities. η represents a factor of
the power draw during the active time, and ρp a power consumption quantifier
bounded between the idle power draw and the maximum power draw. Finally,
cpu loadpl is the CPU load corresponding to Algorithm 3. Consequently, the
energy consumed during the VM placement is defined in Eq. (3); the migration
occurs between start and end.

ppl1(t) = ϑ + η × ρp × cpu loadpl(t) (2)

Epl1 =
∫ end

start

ppl1(t) dt (3)

4 Evaluation

The approach presented in this paper is structured around three components.
First is an automated negotiation component, where agents use a sequence of
message exchanges to agree on resource sharing. The computational complex-
ity of the negotiation procedure is polynomial. Assuming there are N agents in
the system, each agent will evaluate its resources N − 1 times and exchange
at most 3(N − 1) messages to reach an agreement with other agents. The sec-
ond component is the optimal coalition structure generation. Its complexity is
exponential (O(3n)9). Finally, the last component in our approach is the VM
placement algorithm. The latter completes in n log n steps. In summary, the first

8 In the case of a migration an additional storage cost should be factored in.
9 This follows from the computational complexity of IDP.

Cooperative Virtual Machine Placement 147

two components of our approach, executed offline overall, have an exponential
complexity, while the last component, executed online, has a time complexity of
n log n.

Furthermore, we implemented the approach discussed in this paper in Julia10

and evaluated the performance of each algorithm. We ran the evaluations in
Julia 1.9 on an Apple M1 Pro chip with ten (10) cores. Figures 2a to 2c
present the execution performance histograms for Algorithms 1 to 3, respec-
tively. For Figs. 2b and 2c, our evaluation uses 10000 samples and 2307 samples
for Fig. 2a. Each histogram records the minimum, maximum, mean, median and
standard deviation of the corresponding algorithm’s execution time. On average,
our automated negotiation algorithm takes 2.16 ms, while the coalition forma-
tion takes 159.92µs to complete. At runtime, the VM placement algorithm takes
4.08µs to complete. The reduced time of the VM placement algorithm is due to
the reduced number of agents involved in the search.

(c) Evaluation of VM placement

(a) Automated Negotiation (b) Coalition Structure

Fig. 2. Evaluations

We compared our approach to various strategies presented in [7]. For exam-
ple, Table 2 shows the performance (in nanoseconds) of our approach compared
to the modified worst fit decreasing VM placement (MWFDVP). The table
shows a different number of agents (with the number of agents in the coali-
tion). Although both approaches perform almost similarly, our approach per-
forms slightly better.

5 Related Work

Xiao et al. [20] propose an automated resource management system that avoids
the overload of physical machines and guarantees energy efficiency. The app-
roach uses skewness to measure the discrepancies in physical machine utilisation

10 https://julialang.org.

https://julialang.org

148 J. G. Quenum and S. Aknine

Table 2. Comparison with MWFDVP

Number of Agents Our Approach MWFDVP

5(2) 288.603 320.887

10(5) 303.409 493.340

15(5) 431.950 275.332

20(8) 304.888 388.817

25(10) 607.955 494.845

and corrects the load distribution. It also includes a load prediction algorithm to
anticipate the workload submission to the data centre. Finally, this approach mit-
igates resource scarcity by dynamically migrating the VM from one hypervisor to
another. However, this assumes centralised coordination of the hypervisors. Kim
et al. [10] propose a VM placement method for data-intensive workloads. Their
method uses disk bandwidth as the main criterion. The VM placement algo-
rithm, Min-Max exclusive VM placement, offers a strategy to minimise both the
SLA violation rates and the energy consumption.

Motaki et al. [14] propose an ensemble model allowing a smooth adoption of
live migration algorithms based on their correlation to the performance metrics.
With this approach, over-utilised and underutilised physical machines can be
detected optimally, and their load adjusted to reduce power consumption while
limiting the SLA violation rates.

Although the contributions discussed above all address the issue of VM place-
ment with a perspective of efficient power consumption, they entail a costly
computation and involve a large number of agents. Our approach reduces the
number of agents and proposes reasonably fast algorithms.

6 Conclusion

This paper proposes a new approach for virtualisation resource allocations using
prior commitments between hypervisors (agents). The approach integrates an
automated negotiation component followed by a coalition formation and a VM
placement. The VM placement ensures the workload is distributed across all the
active hypervisors. Reducing the set of agents participating in the placement
algorithm tremendously reduces the algorithm’s execution time. Furthermore,
our approach guarantees energy efficiency thanks to the workload distribution
among the hypervisors.

Our approach maximises the profitability of the infrastructure provider by
optimising the hardware resource usage that satisfies almost all user work-
load requests. It limits SLA violations by ensuring that a hypervisor hosting a
VM possesses the hardware resources to run the underlying workloads. Finally,
thanks to our VM placement heuristic, we reduce the idle time of hypervisors
and thus promote energy efficiency.

Cooperative Virtual Machine Placement 149

In the future, we wish to extend the approach in three directions. First, we
wish to introduce more realistic metrics (e.g., a distance function like in [12])
to measure the optimality of the placement. Second, we wish to introduce a
proactive VM placement component to adapt to dynamic scenarios. For example,
when a hypervisor remains underutilised for a long time, it might be better to
migrate all its workload and switch it off. In that case, the commitments need
to be re-evaluated and updated. Moreover, in case of failure of a hypervisor,
the existing commitments need to be re-evaluated, and the workloads migrated
optimally. Finally, elongate and contextualise the VM migration time to support
independent workloads of the same VM supported by resources from various
hypervisors.

References

1. Amani, M., Lai, K.A., Tarjan, R.E.: Amortized rotation cost in AVL trees. CoRR
abs/1506.03528 (2015). http://arxiv.org/abs/1506.03528

2. Asyabi, E., Sharifi, M., Bestavros, A.: ppxen: a hypervisor CPU scheduler for
mitigating performance variability in virtualized clouds. Future Gener. Comput.
Syst. 83, 75–84 (2018). https://doi.org/10.1016/j.future.2018.01.015

3. Barham, P., et al.: Xen and the art of virtualization. SIGOPS Oper. Syst. Rev.
37(5), 164–177 (2003). https://doi.org/10.1145/1165389.945462

4. Brandão, F., Pedroso, J.P.: Bin packing and related problems: general arc-
flow formulation with graph compression. Comput. Oper. Res. 69, 56–
67 (2016). https://doi.org/10.1016/j.cor.2015.11.009. https://www.sciencedirect.
com/science/article/pii/S0305054815002762

5. Changder, N., Aknine, S., Ramchurn, S.D., Dutta, A.: ODSS: efficient hybridiza-
tion for optimal coalition structure generation. In: The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, 7–12 February 2020, pp. 7079–7086. AAAI Press (2020)

6. Chinprasertsuk, S., Gertphol, S.: Power model for virtual machine in cloud comput-
ing. In: 2014 11th International Joint Conference on Computer Science and Soft-
ware Engineering (JCSSE), pp. 140–145 (2014). https://doi.org/10.1109/JCSSE.
2014.6841857

7. Chowdhury, M.R., Mahmud, M.R., Rahman, R.M.: Implementation and perfor-
mance analysis of various VM placement strategies in CloudSim. J. Cloud Comput.
4(1), 1–21 (2015). https://doi.org/10.1186/s13677-015-0045-5

8. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing
approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-
Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 35

9. Filho, M.C.S., Monteiro, C.C., Inácio, P.R.M., Freire, M.M.: Approaches for opti-
mizing virtual machine placement and migration in cloud environments: a survey.
J. Parallel Distrib. Comput. 111, 222–250 (2018). https://doi.org/10.1016/j.jpdc.
2017.08.010

10. Kim, M.-H., Lee, J.-Y., Raza Shah, S.A., Kim, T.-H., Noh, S.-Y.: Min-max exclusive
virtual machine placement in cloud computing for scientific data environment. J.
Cloud Comput. 10(1), 1–17 (2021). https://doi.org/10.1186/s13677-020-00221-7

http://arxiv.org/abs/1506.03528
https://doi.org/10.1016/j.future.2018.01.015
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1016/j.cor.2015.11.009
https://www.sciencedirect.com/science/article/pii/S0305054815002762
https://www.sciencedirect.com/science/article/pii/S0305054815002762
https://doi.org/10.1109/JCSSE.2014.6841857
https://doi.org/10.1109/JCSSE.2014.6841857
https://doi.org/10.1186/s13677-015-0045-5
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1016/j.jpdc.2017.08.010
https://doi.org/10.1016/j.jpdc.2017.08.010
https://doi.org/10.1186/s13677-020-00221-7

150 J. G. Quenum and S. Aknine

11. Le, T.: A survey of live virtual machine migration techniques. Comput. Sci. Rev.
38, 100304 (2020). https://doi.org/10.1016/j.cosrev.2020.100304. https://www.
sciencedirect.com/science/article/pii/S1574013720304044

12. López, J., Kushik, N., Zeghlache, D.: Virtual machine placement quality estimation
in cloud infrastructures using integer linear programming. Software Qual. J. 27(2),
731–755 (2018). https://doi.org/10.1007/s11219-018-9420-z

13. Masdari, M., Zangakani, M.: Green cloud computing using proactive virtual
machine placement: challenges and issues. J. Grid Comput. 18(4), 727–759 (2019).
https://doi.org/10.1007/s10723-019-09489-9

14. Motaki, S.E., Yahyaouy, A., Gualous, H.: A prediction-based model for virtual
machine live migration monitoring in a cloud datacenter. Computing 103(11),
2711–2735 (2021). https://doi.org/10.1007/s00607-021-00981-3

15. Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for
coalition structure generation. In: Padgham, L., Parkes, D.C., Müller, J.P., Par-
sons, S. (eds.) 7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Estoril, Portugal, 12–16 May 2008, vol. 3,
pp. 1417–1420. IFAAMAS (2008). https://dl.acm.org/citation.cfm?id=1402887

16. Rodŕıguez-Haro, F., et al.: A summary of virtualization techniques. Proce-
dia Technol. 3, 267–272 (2012). https://doi.org/10.1016/j.protcy.2012.03.029.
https://www.sciencedirect.com/science/article/pii/S2212017312002587. The 2012
Iberoamerican Conference on Electronics Engineering and Computer Science

17. Scroggins, R.: Virtualization technology literature review. Glob. J. Comput. Sci.
Technol. (2013). https://computerresearch.org/index.php/computer/article/view/
317

18. Sudhakar, Saravanan: A survey and future studies of virtual machine placement
approaches in cloud computing environment. In: Proceedings of the 2021 6th Inter-
national Conference on Cloud Computing and Internet of Things, CCIOT 2021,
pp. 15–21. Association for Computing Machinery, New York (2021). https://doi.
org/10.1145/3493287.3493290

19. Wei, L., Lai, M., Lim, A., Hu, Q.: A branch-and-price algorithm for the
two-dimensional vector packing problem. Eur. J. Oper. Res. 281(1), 25–
35 (2020). https://doi.org/10.1016/j.ejor.2019.08.024. https://www.sciencedirect.
com/science/article/pii/S0377221719306770

20. Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines
for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–
1117 (2013). https://doi.org/10.1109/TPDS.2012.283

https://doi.org/10.1016/j.cosrev.2020.100304
https://www.sciencedirect.com/science/article/pii/S1574013720304044
https://www.sciencedirect.com/science/article/pii/S1574013720304044
https://doi.org/10.1007/s11219-018-9420-z
https://doi.org/10.1007/s10723-019-09489-9
https://doi.org/10.1007/s00607-021-00981-3
https://dl.acm.org/citation.cfm?id=1402887
https://doi.org/10.1016/j.protcy.2012.03.029
https://www.sciencedirect.com/science/article/pii/S2212017312002587
https://computerresearch.org/index.php/computer/article/view/317
https://computerresearch.org/index.php/computer/article/view/317
https://doi.org/10.1145/3493287.3493290
https://doi.org/10.1145/3493287.3493290
https://doi.org/10.1016/j.ejor.2019.08.024
https://www.sciencedirect.com/science/article/pii/S0377221719306770
https://www.sciencedirect.com/science/article/pii/S0377221719306770
https://doi.org/10.1109/TPDS.2012.283

Edge Computing

A Multi-pronged Self-adaptive Controller
for Analyzing Misconfigurations

for Kubernetes Clusters and IoT Edge
Devices

Areeg Samir(B) , Abdo Al-Wosabi , Mohsin Khan ,
and H̊avard Dagenborg

Universitetet i Tromsø - Norges arktiske universitet, Hansine Hansens veg 18,
9019 Tromsø, Norway

areeg.s.elgazazz@uit.no

Abstract. Kubernetes default configurations do not always provide
optimal security and performance for all clusters and IoT edge devices
deployed, making them vulnerable to security breaches and informa-
tion leakage if misconfigured. Misconfiguration leads to a compromised
system that disrupts the workload, allows access to system resources,
and degrades the system’s performance. To provide optimal security for
deployed clusters and IoT edge devices, the system should detect mis-
configurations to secure and optimize its performance. We consider that
configurations are hidden, as they are some sort of secret key or access
token for an external service. We aim to link the clusters and IoT edge
devices’ undesirable observed performance to their hidden configurations
by providing a multi-pronged self-adaptive controller to monitor and
detect misconfigurations in such settings. Furthermore, the controller
implements standardized enforcement policies, demonstrating the con-
trols required for regulatory compliance and providing users with appro-
priate access to the system resources. The aim of this paper is to intro-
duce the controller mechanism by providing its main processes. Initial
evaluations are done to assess the reliability and performance of the con-
troller under different misconfiguration scenarios.

Keywords: Misconfiguration · Monitor · Detection · RBAC · IoTs
Edge Devices · Clusters · Markov Processes

1 Introduction

Misconfiguration is unsecured default configurations or incorrect configuration(s)
within the parameters of the system components (i.e., system clusters, IoT edge
devices) that violate a configuration policy and may lead to vulnerabilities that
affect the system’s workload and performance at different system levels. At the
edge level, a misconfigured edge device opens the potential for security breaches.
For instance, if an edge device runs with default privileges or the same privileges
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 153–169, 2023.
https://doi.org/10.1007/978-3-031-46235-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_10&domain=pdf
http://orcid.org/0000-0003-4728-447X
http://orcid.org/0000-0002-3655-8140
http://orcid.org/0000-0003-1815-8642
http://orcid.org/0000-0002-1637-7262
https://doi.org/10.1007/978-3-031-46235-1_10

154 A. Samir et al.

as the application, vulnerabilities in any system’s component can be acciden-
tal (e.g., remote SSH open) or intentional (e.g., backdoor in component). At
the application level, a misconfigured container (e.g., network port open) allows
an attacker to exploit the Docker API port that escalates the attack to other
containers and hosts. At the cluster level, misconfigurations in core Kubernetes
components (e.g., API server, Kubelet, Kube-proxy) lead to the compromise of
complete clusters, severely impacting system performance. To optimize a sys-
tem’s performance, system resources (e.g., CPU, memory) should be maximized
for a workload; however, knowing the right limits to set for smooth application
performance with different resource settings can be tricky. Large cloud service
providers (e.g., Google, Microsoft, Amazon, Netflix) experienced misconfigura-
tions that resulted in a vulnerable system [11,25]. The management of config-
urations has been explored in the literature [3,4,8], however, the complexity of
misconfigurations arose from a large number of configuration parameters, their
correlations, and dependencies makes the reasoning about the misconfigurations
difficult.

This paper extends the work in [20,21] by proposing more details about a
self-adaptive controller that detects misconfigurations of edge devices and clus-
ters. The proposed controller is based on Hierarchical Hidden Markov Models
(HHMMs), which we chose to (1) map the observed failure in metrics varia-
tions (e.g., CPU, Network, Memory, Workflow, Response Time) to the hidden
misconfigurations in edge devices and system clusters. (2) Track the path of mis-
configuration to show its impact on performance and workload. Furthermore, the
controller extension implements standardized enforcement policies, demonstrat-
ing the controls required for regulatory compliance, and providing users with
appropriate access to the system resources by extending the HHMMs to restrict
access to our system and prevent security policy violations. The objective of this
paper is to introduce the controller in terms of its architecture and processing
activities, focusing on performance and reliability concerns. The remainder of
this paper is organized as follows. Section 2 presents the research challenges.
Section 3 discusses a use-case. Section 4 introduces the self-adaptive controller
phases. Section 5 evaluates the controller. Sections 6 and 7 conclude the article
and present the future direction of the work.

2 Research Challenges

Managing the misconfiguration of Kubernetes clusters and edge devices offers
several challenges, such as: Workload Misconfiguration: containers have
built-in configuration settings to determine the amount of CPU and memory
resources they use (via resource requests and limits). These settings in essence
override some auto-scaling capabilities of the underlying platform and can lead
to under-provision of the workloads, which causes performance issues, or over-
provision, which can lead to dramatic inefficiency and cost overruns. For example,
a container may run with more security permissions than required and escalate
its own privileges, e.g., root-level access, which consumes considerable resources

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 155

to fix and cause system downtime. A single workload may require significant
configuration to ensure a more secure and scalable application [18,23,26].

Resource-Limit: misconfigurations of Kubernetes workloads often involve
inefficient provisioning of compute resources, leading to an over-sized bill for
cloud computing. To maximize CPU efficiency and memory utilization for a
workload, teams need to set resource limits and requests. But knowing the right
limits to set for smooth application performance can be tricky [2,10,13].

Dependency between System Components: while many tools are avail-
able for configuration scanning, there are some challenges ahead of them: (a)
some configuration processes are done manually, which could lead to a risk of
user error [19,22,27] (b) Configuration dependencies between different system
components are passed manually as configuration parameters, which could lead
to a complex set of CI/CD pipelines that is difficult to maintain [6,7,12].

Shared-Configurations: A configuration can be used by multiple applica-
tions that are themselves managed by different teams. While a configuration’s
name (key) stays the same across environments, a configuration’s value varies
across environments, which makes configuration changes hard to test, as chang-
ing a shared configuration requires coordination across teams, coordinated test-
ing, and coordinated deployment [12,13,19,29].

Configuration Change Late Check: While some configuration parame-
ters may be checked when used in specific tasks at startup time, other parameters
may not be checked or used. These parameters might have errors that wouldn’t
be detected until they showed up later (e.g., error handling). Before deploying,
the configuration parameters must be validated to optimize system performance,
which is a time-consuming task, and failing to validate a change could lead to
undesirable downtime.

3 The System Under Observation - A Healthcare
Use-Case

Our system comprises hierarchical components with different configurations,
resources, and policies. Components include gateways, sensors, services (e.g.,
monitor heart rate), edge devices, clusters, nodes, containers, and system users
(e.g., healthcare participants), including their roles and access control to manage
and control sensors and actuators attached to the system, as shown in Fig. 1.

At the edge layer, misconfiguration (e.g., lack of authentication and autho-
rization [15]) could affect device monitoring and allow an attacker to inject
or modify data to reprogram the device. At the fog layer, misconfiguration at
the cluster level (e.g., vulnerable product version [14,16], no parameter valida-
tion [17]) could allow an attacker to gain root-level access to the host and exploit
system processes. At the cloud layer, misconfiguration, such as enabling anony-
mous access to blob containers in cloud storage, might result in the leakage of
sensitive information. In such settings, participants linked to the system may
experience anomalous behavior or threats that stress the system and its per-
formance. Hence, we differentiated between the types of observation concerning

156 A. Samir et al.

misconfiguration and performance degradation: error that refer to a misconfig-
ured system component, which is unknown and hidden from the participants and
could lead to threats such as distributed denial of service attacks that target
the configuration of the component to impact the trust established between the
IoT devices and the system. Error and its consequences of threats can lead to
anomalous or faulty behavior anomaly/fault, which is hidden from the partic-
ipants (i.e., overload and abnormal flow of information characterizing stealthy
threat strategies conditioned on the system model and the control policy). Such
settings are observed by the occurrence of an observed failure (e.g., saturated
resources) emitted from the settings of hidden components.

4 Self-adaptive Controller

This section presented the main phases of the controller. The controller adopted
the Monitor, Analysis, Plan, Execute, and Knowledge (MAPE-K) architecture
for self-adaptive systems and consists of (1) Monitoring that collects performance
data; (2) Detection and Identification that analyzes detected misconfigurations
and vulnerabilities in edge device(s) and container-based cluster and identifies
its type. To control access from edge devices to system components, we extended
HHMM to manage constraints in role-based access control. Models are imple-

Fig. 1. Hierarchical Interaction between System Components, Participants, and The
Access Control

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 157

mented at the gateway to collect and transmit measurements from the edge
device to the fog.

4.1 Phase 1: System Components Monitor

We checked the normality of the workload of the components under observa-
tion using the Spearman rank correlation coefficient to estimate the dissociation
between the observations emitted (failures) and the amount of flow (hidden work-
load). To achieve that, we wrote an algorithm that is used as a general threshold
to highlight the occurrence of faults in managed components (for more details,
see [21]). The controller checked the configuration settings against the bench-
marks of Azure Security, CIS Docker, and Kubernetes to detect any mismatch
between the settings and the requirements of secure deployment in components.

4.2 Phase 2: Access Control Policy Management

We controlled the information flow from/to the system by managing the inter-
action of participants with the system. Each participant has allowed actions and
roles to access nodes and services of the system (see Fig. 1). We identified a list
of the roles and actions of the participants, which has a set of access variables
for each participant, such as the roles, actions, access to the API, the autho-
rizations they have, the permissions, the boundaries of the permissions, and the
conditions. The permission limit defines the maximum permissions granted to
participants and roles using an enumeration-type action with two values (true
and false). If the permission action is true, then the permission is allowed; oth-
erwise, it is rejected. Moreover, we assumed that if no information flow policy is
specified in the domain, the inbound and outbound flow will be set if the policy
has any outbound rules. The policies in the observed system do not conflict as
they are addictive. We extended our HHMM model with a set of controlling
labels made up of tags, each of which stands for a specific integrity issue (pri-
vate data) and outlines the information flow allowed. We define a role-based
access space and a set of policies for each participant to allow specific partici-
pants access to specific system services. The access control policies are specified
in the form of YAML format by writing a script that defines a template for
generating YAML definitions based on the external policies. The script iterates
over each policy, fills in the template with policy details, and accumulates the
generated YAML. The script writes the accumulated YAML to an output file
that is applied to the Kubernetes cluster and ensures that the translated policies
are properly enforced.

System Component and Participants Role we specified a set of labels
made up of tags to represent certain integrity (private data) and secrecy issues
(sanitized data) to manage system components and access of participants from
medical devices. Tags outline information flows by regulating the sensitive
flow of information, such as patient personal information and related medical
reports/outcomes. Tags correlate objects, such as patient and data items, with
the secrecy and integrity flow constraints required to formulate a policy. Each tag

158 A. Samir et al.

is decomposed into a pair 〈c, s〉 of concern and a specifier. For example, the pair
〈medical, Patient432〉 symbolizes Patient432’s health information. We defined
all data records of a particular type without listing all potential tags, as shown
in Fig. 2. Each tag has one or more subtag connections defined for any concern
and specifier. For example, a tag T0 = 〈c, s〉 is a subtag of tags T{1,0} = 〈c, ∗〉
and T{1,1} = 〈∗, s〉, which are in turn subtags of the tag T2 = 〈∗, ∗〉 as shown in
Fig. 3. In addition to the tags, every participant has an access variable Λ that
expresses (1) the access role AR: read R, write W , update U or combination of
them (see Fig. 2), (2) access status AS successful Approval or Fail, (3) device
id DID (see Fig. 4), (4) device type DTY , (5) component label Cabel (i.e., node
label), (6) component type Comty either (node, container, or services), (7)
component id ComID to access node, container or service, (8) user id UserID,
and (9) data access type DAT either PatientMedicalInfo, ReportAnalysis, Pre-
scribedTests, MedicalPrescription, and/or LabResults. The state space is a set of
Λ = {AR,AS,DID,DTY,Cabel, ComID,UserID,DAT}. To define the maxi-
mum permissions granted to participants, a set of access boundaries is defined
based on conditions and actions. The access boundaries take effect only if all con-
ditions are satisfied. The access boundaries are accompanied by an enumeration
type that takes true or false as a value to permit or reject access to the system.
For each component and participant, we specify access control permissions as
follows.

Access Control Permission for each type of component Comty,
each participant Participant{p} Doctor, Patient, GP, DigCen, or Phar-
macy has two label constraints (secrecy and integrity). The secrecy
label restricts the read operation (i.e., incoming data flow), for exam-
ple, Sec(Participant{Patient}) = {DAT,UserID}. The integrity label
constrains the write operation (i.e., outgoing data flow), for example,
Int(Participant{Patient}) = {Approval,DID,DTY }. The status of these two
labels specifies the security context of accessing a specific component by a spe-
cific participant. For example, Patient and PatientMedicalInfo tags with the
type of data accessed ‘DAT ’ are presented in the hospital process to obtain
patient data Sec(Participant{p}) according to (1).

∀p ∈ Participantp ∃! (Sec(Participantp) ∧ Int(Participantp)),
where (Sec() and Int()) ⊃ Λ,∃! (DID ∧ DTY) ForEvery Patient,∧

⇐⇒ DID ⊂ Comty

(1)

To ensure integrity consistency between groups, our system only accepts
data from authorized medical devices based on the confirmation of approval
of a patient and gives access to a specific node Int(Participant{Patient}) =
{Approval,HeartMon24329, N21} as shown in Fig. 4, and according to the rule
in (2).

E1 → E2, if Sec(E1) � Sec(E2) ∧ Int(E2) � Int(E1) (2)

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 159

Fig. 2. Role-Based Access Control

Fig. 3. Tag and Sub-Tags Relations Fig. 4. Information Flow Access Con-
straints

A decision rule Ω = {AccessGranted, PerformManagement} is added to
allow certain actions in the access role (read, write, or update information) and
to provide system-wide enforcement of the information flow policy, as shown
in Fig. 2. The decision rule represented a generated probability distribution
μTins(Comty) from a type of component Comty, which is labeled Cabel, with
specific actions at a time instant Tins as shown in (3).

ω =

⎧
⎨

⎩

AccessGranted, PerformManagement If
Comty ∈ {AR,AS,DID,DTY,ComID,UserID,DAT}

AccessDenied, Otherwise
(3)

160 A. Samir et al.

Addition of New Edge Device to adapt the controller to accept new data
from a new device, we introduced entities E with actions and events. Each entity
has participants and sensors that interact with system nodes through mobile
applications/interfaces and medical devices. Here, E1 (e.g., patient’s device)
has access to entity E2 (e.g., specific node ‘N21’) with any preorder relationship
�. For example, E2 can read data from entity E1 only if the secrecy of E1 is
preorder (i.e., subset) of the secrecy of E2, while entity E1 can write to entity
E2 only if the integrity of E2 is preorder of the integrity of E1. Entities are
registered in a domain with credentials to be validated upon the authorized
participant’s request.

Domain Management we define a domain as a named grouping structure
with a particular function. The domain represents an organizational system
cluster (s) with participants associated with devices. Each domain maintains its
policies to control interactions with entities E and other domains. The domain
indicates that if either of its policies returns Ω = AccessGranted, then the
information flow is granted for specific entities E with an annotation of the
sequence, denoted X. To map the domain of participants to the components of
the system without requiring them to store these mappings and to manage the
workload of the system under observation, each component with a component
label Cabel is registered in a domain. Depending on the policy, entities might
perform actions in other domains for which they are not registered. Thus, to allow
domains controlling the circumstances in which data is released and in which
information can be accessed, we considered that entities could communicate
with the system through a combination of the following three identifiers: (a)
other nodes that are allowed (exception: a node cannot block access to itself),
(b) namespaces that are allowed, and (c) IP blocks (exception: traffic to and
from the node where a running container is always allowed, regardless of the IP
address of the node). Hence, for each entity, we computed the most probable
extended annotation considering (Len, SN) at time tim. We defined Len as the
length of the graph sequence and SN as the number of states of the HHMM.
We constructed a directed cyclic graph in which every path has a start vertex
device id DID and an end vertex component id ComID corresponding to an
annotation of the sequence X of that path (e.g., path1 : DID1 > Cl1 > N21;
path2 : DID2 > Cl1 > N22; path3 : DID1 > Cl1 > N23). On the contrary,
for every annotation of X, there is a path with specific properties. For example,
Xi=1 = {path1, tim,Ω, Participant{p},Λ}. We considered that the only allowed
connections in the graph are those from the containers and nodes in our domains
under some containers and policies, which do not conflict, as they are addictive.
Hence, for a connection from a source node to a destination node, both the
inbound and outbound flow policy on the source node and the destination node
must allow the connection. If either side does not allow the connection, the
connection will be rejected. If no information flow policy is specified in the
domain, then by default, the inbound flow will always be set, and the outbound
flow will be set if the policy has any outbound rules. Each information flow policy
permits participants to access the system’s components in a Namespace. Each

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 161

policy includes a type list PolicyType, which may include inbound, outbound,
or both in a namespace. The PolicyType indicates whether the given policy
applies to the inbound flow to one or more selected nodes (s), the outbound flow
from one or more selected nodes (s), or both. If no PolicyType are specified in
a Namespace, then by default, inbound and outbound will be set if the policy
has any outbound rules, and all inbound and outbound flows are not allowed to
and from nodes in the Namespace. Participants access the system according to a
request that includes the username, the requested action, and the object affected
by the action. The request is authorized if the existing policy for a Namespace
declares that the participants have permission to complete the requested action
(write, read, update, or combination of them).

Our intention is not to prescribe action sequences for participants. Instead,
we provide mechanisms to control the system’s access actively, according to the
flow of information from the participants, through adaptation and conditional
access to the system components. Once access to the system is secured, the
controller moves on to the next phase.

4.3 Phase 3: Misconfiguration Detection

We use HHMM [5] to model the hierarchical structure of our system and map the
hidden misconfiguration settings from the observer to the performance metric.
We choose HHMM because every component, along with its dependence on
configuration settings, can be represented as a set of hierarchically interlinked
HMMs, as shown in Fig. 5.

The components of our system under observation have a hierarchical struc-
ture. The system consists of one or more clusters Cl (root state) that are com-
posed of a set of nodes N (internal states) that host containers C (substates)
with one or more deployed services S (production state) as a component of the
application. Each component emits observations, which are emissions of fail-
ures from a component resource. Each component has configuration settings.
The node assigns requests to its containers, communicating at the same node
or externally. A service could be deployed in several containers simultaneously,
and a container is defined as a group of one or more containers that consti-
tute one service. The system has more than one cluster Clj=1 and has internal
states N j=2

i , which represent our virtual machines (nodes) with horizontal i

and vertical j. Each node has a substate Cj+1
i that represents our containers

(e.g., C3
1 at vertical level 3 and horizontal level 1). Each container has deployed

services Sj+2
i that emit Observations Space OSn, which reflects a sequence of

workload fluctuations for CPU, Memory, Network, and Response time. The fluc-
tuation is associated with the saturation of observed computing resources to be
either H: High, L: sLow, or N: Normal, more details in [21]. This fluctuation
is associated with a probability that reflects the state transition status from
AF (Abnormal Flow) to NL (Normal Flow) at a failure rate �, which indi-
cates the number of failures emitted from our Cluster Space (ClS) over a period
of time. ClS consists of a set of Ns, containers C, and services S. The edge
direction indicates the information flow and the dependency between states.

162 A. Samir et al.

Fig. 5. Misconfiguration Detection in Multi-Clusters System(s) Using HHMM

For example, N2
1 = {C3

1 , C3
2}, N2

2 , N2
3 = {C3

3 , C3
4}, C3

1 = {S4
1}, C3

2 = {S4
2},

C3
3 = {S4

3}, C3
4 = {S4

4}.
For each participant in a specific domain with Xi = {pathi, tim,Ω, Partici-

pantp,Λ} where Ω = {Access Granted}, our system calls its nodes to enter
their containers and services N2

1 = {C3
1 , C3

2},N2
2 , N2

3 = {C3
3 , C3

4}, C3
4 =

{S4
1 , S4

2 , S4
3 , S4

4}. Here, each service emits observations and transits to its final
state S4

eCid to end the transition for the services and to return the control to
its calling parent C3

2 , as shown in (4) and (5). The same process is followed,
however, to make a horizontal transition to C3

2 to obtain the observations at the
container level. Once the horizontal transition is completed, the transition goes
to the end state C3

eNid to make a vertical transition to the state N2
1 . Once all

transitions are achieved under this node, the control returns to N2
3 , as shown in

Fig. 5. The model is trained by calculating the probabilities of the parameters to
obtain a hierarchy of abnormal flow path AFseq = {Cl,N2

2 , N2
3 , C3

3 , S4
3}, which

is affected by the misconfigured component (N2
2) and might cause a threat,

as shown in (6). Here, we recursively calculate �, which is ψ for a time set
(t̄ = ψ(t, t + k, Sj

i , S
j−1)), where ψ is a state list, which is the index of the most

probable production state to be activated by Sj−1 before activating Sj
i . t̄ is the

time when Sj
i was activated by Sj−1. The δ is the likelihood that the most prob-

able state sequence generates (Ot, · · · , O(t+k)) by recursive activation. τ is the
transition time at which Sj

i was called by Sj−1. Once all recursive transitions
are returned to Clw, we get the most probable hierarchies starting from Clw the
production states in the T period by scanning the state list ψ, the likelihood of
states δ and the transition time τ . The same previous steps are taken for each
cluster where w refers to the cluster number w = {1, 2, · · · ,m}. We correlated
each state with time to know its activation time, its activated substates, and
the time at which the control returns to the calling state to have more informa-
tion about the occurrence time and dependency of the misconfiguration. In the
end, a sequence of anomalous hierarchical states is obtained. We compared the
detected hierarchies with the observed ones to detect the misconfigured state and

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 163

its impact on the flow of information. The detected path with the lowest prob-
abilities will be considered the vulnerable path with misconfigured states and
abnormal flow. For example, the observed failure LNetwork is associated with
a vulnerable abnormal flow path AFseq = {Cl,N2

2 , N2
3 , C3

3 , S4
3} that is affected

by N2
2 .

ΥS = max
(1≤r≤Sj

i)

{

δ(t̄, t + k, Sj
r , S

j
i) a

Sj
i

Sj
eCi

}

(4)

�S = max
(1≤y≤Sj−1)

{
δ(t, t̄ − 1, Sj

y, S
j−1)aSj−1

SeCy
ΥS

}

(5)

AFseq = max
Cl(1≤w≤m)

{
δ(T,Clw), τ(T,Clw), ψ(T,Clw)

}

(6)

5 Evaluations

This section assesses the detection and role-based access control, focusing on the
measurement of performance and reliability.

5.1 Detection Evaluation

Assessment1: Simulation Environment

Environment Settings: The testing environment is built with Python. It runs on
VMware and consists of three nodes (i.e., VM instances), which are for (1) VM1:
the Healthcare application that handles patient data. The VM1 is connected
to an edge gateway device that acts as a local hub for data aggregation and
processing. The edge gateway collects data from the IoT device and transmits the
collected data to VM1 for further processing. The device communicates with the
edge gateway through Wi-Fi. Edge devices with similar functionality are grouped
and allocated to a respective group. For VM1, we created a patient application on
the edge device that generates patient information using the Python Faker and
paho-mqtt libraries and transmits the information to VM1. The edge gateway is
presented by the MQTT client, which establishes a connection to the gateway’s
IP address and port. (2) VM2: correctly configured container-based cluster node,
and (3) VM3: controller. For each node, we implemented a set of containers
and services. Each node is equipped with Linux OS (Ubuntu 18.10 version), a
VCPU, and 2GB of VRAM. The virtual platform is allocated to a physical PC
equipped with Windows 11, Intel Core i7-1260P 2.10 GHz, and 32 GB of RAM.
Around 30 namespaces are created, each with 4 microservices (pods) used for
performance measurements and assigned the same number of network policies.
The number of policies created was 900, which were ordered, managed, and
evaluated using Calico, Open Policy Agent, and Styra DAS, respectively. A set
of agents was installed to collect data on CPU, memory, network, changes in the
file system (i.e., no flow issued to the component), patient health information,

164 A. Samir et al.

device operation status, device id, and system components service status. The
agent adds a data interval function to determine the time interval to which
the collected data belong. The agent is configured to connect to the system
automatically with the valid credentials of the system users for authentication.
The Datadog tool is used to obtain a live data stream for the running components
and to capture the request-response tuples and associated metadata. Prometheus
is used to group the collected data and to store them in a time series database
using Timescale-DB.

Table 1. Detection Evaluation

Models RMSE PFD Recall Accuracy

HHMM 0.3299 0.4050 95.01% 94%

CRFs 0.4023 0.4208 92.86% 92%

Edge Device Configuration Errors: We installed K3s on a Raspberry Pi 3 Model
B+ and set up a single node Kubernetes cluster. We created three configuration
errors. The first one is an ‘empty configuration file’ that makes the device have
trouble starting modules. The second one is ‘enabling unnecessary port’, in which
the YAML configuration defines a pod with a single container running the Nginx
image. The container is configured to expose three ports: 80, 443, and 8080.
The third one deployed a container image ‘Simulated Hospital1’ that generates
patient data. The YAML image file is configured to allow privilege escalation.

Container-based Cluster Configuration Error Scenarios: We write our configu-
ration files using YAML. Privilege escalation configuration errors were deployed,
such as Privilege Escalation Flaw and Privilege Escalation Flaw and Redeploy-
ment Fail [20]. The configuration files of the components are stored in GitOps
version control to simplify the rollback of configuration changes. We use Kube-
Applier to fetch our declarative configuration files for our clusters from the Git
repository.

Performance Evaluation: The model was trained on the collected data and on the
configuration error scenarios all at once. The performance of the detection model
is evaluated by the root mean square error (RMSE) and the probability of false
detection (PFD), which are the metrics commonly used to assess the accuracy of
the detection. The RMSE measures the differences between the detected value
and the one observed by the model. A lower RMSE value indicates a more effec-
tive detection scheme. The PFD measures the number of components normally
detected that have been misdetected as anomalies by the model. A lower PFD
value indicates a more effective detection scheme. The efficiency of the model is
compared to Conditional Random Fields (CRFs); see Table 1. We noticed that
the computation of CRFs is harder than that of the HHMM. The results show

1 https://github.com/google/simhospital.

https://github.com/google/simhospital

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 165

that the performance of the proposed detection is better than that of the CRF,
as it correctly detected misconfigurations with around 95% recall and 94% accu-
racy with few false positives, which occur due to some ports being identified as
insecure (e.g., insecure docker registry 5000). A false positive occurred at the
edge level due to a condition identified in the YAML rule that is based on a
fixed threshold without taking into account personal variations that could affect
normal ranges of vital signs (e.g., condition : heart rate > 100).

Assessment2: Real-World Scenario

Learning Settings: The controller is further trained in some of the misconfigu-
rations that allow an escalation of privileges to the host [15,16]. We evaluated
the detection performance by comparing the HHMM with the HMM and mea-
suring their log-likelihood. We ran each model for a maximum of 10 iterations
with a random start and an approximate training period ranging from 164 s to
9 min with two layers of HHMM. The size of our generated data set was approx-
imately 10 MB with a period of 6 months. We selected a subset of the data set
of around 4.3 MB mainly related to the types of misconfiguration mentioned
above to train the models and provide more targeted and specialized training
data sets. We trained the models on different hidden state numbers (8, 16, 32,
64) and evaluated their performance. The data are divided into 70% training
data and 30% testing data, more details on the environment settings in [20].

Performance Evaluation: In the training data, the log-likelihood of the HHMM
was around −63 with 8 states, which increased with increasing number of states
to −50 with 10 states and −20 with 30 states. The HMM was −30 with eight
states, −20 with 10 states, and reached −15 with 30 states. On the test data,
the log-likelihood of HHMM gradually increased from −50 with 8 states to a
peak of −5 with 30 states. Then the model increased slightly with increasing
number of states, while the HMM fluctuated to −65 with 8 states, −50 with
10 states, and −60 with 30 states. After that, the HMM decayed to −70 with
increasing numbers of states. We observed that HHMM outperforms HMM in
different states. With a decreasing number of states, both models show good
performance. However, with an increasing number of states, HHMM performance
shows better results, whereas HMM performance gradually decays, showing a
symptom of overfitting as its likelihood drops from training data to testing data.
This returns to the larger capacity of the HHMM, which allows the model to
adapt to new changes and to be less prone to overfitting.

5.2 Rule-Based Access Control Performance Evaluation

Test Settings: We created access control roles for system participants with dif-
ferent roles and different access levels, as shown in Fig. 2. We evaluated the
performance of rule-based access control under misconfiguration by giving the
Pharmacy the Doctor role. This misconfiguration violates the principle of privi-
leged access and leads to security breaches or unauthorized access. We use Net-
Perf and iPerf to measure network latency. The NetPerf is configured with a

166 A. Samir et al.

200-second test duration and a goal of 99% confidence that the measured mean
values are within ±2.5% of the real mean values. The iPerf is configured with a
30-second duration of the test, a 5-second reporting interval, and 3 numbers of
parallel user threads to use, in which each thread will initiate a separate connec-
tion to the server. To constitute unauthorized access to the system, we define
the rule that a pharmacy can write and update patient data. We implemented
a trace file with 5000 requests that correspond to 15 min of workload. The trace
file is generated using OpenTelemetry and Jaeger in Kubernetes. We generated
several unauthorized access attempts from the Pharmacy due to the misconfigu-
ration. We focussed on measuring the overhead latency of network performance
during the creation of several network access policies.

Performance Evaluation: We created a cluster with two namespaces: “users-
namespace” and “healthcare-namespace” with 4 microservices (pods) for each.
We created an access control policy that assigns to the pharmacy the “edit”
ClusterRole, which allows for write and update access to resources within the
“healthcare-namespace”. We measured unauthorized access to the application.
The average access was about 3100 access attempts per 2 min with CPU and
memory loads 80% and 75%, respectively. We measured the performance over-
head for network latency by increasing the number of policies from 100 to 900
policies by 100 policies at a time. We created some policies, one that allows
traffic communication between pods and gave it the highest order, and the other
one, a policy that disallows traffic between pods, and we gave it the lowest order.
We increase the number of policies to measure network performance in terms
of latency. Our goal is to enforce a network policy that restricts communication
between these namespaces. Hence, the pods in the “users-namespace” namespace
can only communicate with pods in the “healthcare-namespace” namespace on
a specific port while denying all other traffic and on specific roles. We created
a misconfiguration that violates the principle of privileged access in the “users-
namespace” namespace by assigning the user “pharmacy” the “cluster-admin”
ClusterRole, which grants the pharmacy full access including the ability to mod-
ify resources and update other patient’s data at least. During the evaluation, the
network performance shows an unremarkable impact on latency while increasing
the number of policies. The latency was almost stable, from 70 microseconds
with 100 policies to 85 microseconds with 900 policies. Due to the misconfigura-
tion of the network policy, the pods within the nodes were able to communicate
with resources that should be restricted. We created another VM (VM4) with 4
pods to communicate with VM1 to measure the latency of the pods between the
nodes. We stress the resources of VM4 with Locust with a waiting time between
requests of 5 to 15 ms. The latency for the pods’ communications between the
nodes was higher than that for the pods’ communication within the node. It
increased from 250 microseconds with 100 policies to 280 microseconds with 900
policies. This leads to shared resources and direct communications between the
pods on the same network, resulting in lower latency.

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 167

From the results obtained, we conclude that system performance is directly
affected by configuration errors. The higher the number of configuration errors,
the more likely the system will experience performance degradation.

6 Related Work

Existing frameworks have paid limited attention to the critical role of efficient
management of misconfiguration in edge devices and clusters [1,4,24]. The work
in [19] conducted an empirical study with 2,039 Kubernetes manifests to catego-
rize the security misconfiguration and quantify it. Another work [3] presented a
performance-centric configuration framework for containers on Kubernetes that
gives unified key-value data, including configurations and metrics, to analysis
plugins by providing a built engine for processing defined rules in analysis plug-
ins. However, those techniques are time-consuming to come up with good result
quality and are unmanageable with large datasets. The techniques suffer from
catching every code defect and are limited when it comes to addressing issues
in complex, multi-component applications, especially in scale and load balance
environments. The work in [27] focused on detecting configuration errors at
the startup time by analyzing the source code and generating the configuration
checking code. However, this technique cannot handle the interaction between
the configuration parameters. An analysis of misconfigurations and their associ-
ated code blocks helps in detecting which parts of the system code are associated
with configuration parameters. This could be achieved by deriving the specifica-
tion of the configurations by designing a custom control and data flow analysis
targeting the configuration-based code [9,28], based rule [22], or based infer-
ence. However, those ways are highly specialized as some of them only focus on
security, are not simple to write and maintain, are geared towards a host only
instead of container images and edge devices, and can result in false positives or
false negatives. Unlike our work, previous techniques are (1) limited in the types
of configuration errors that can be detected. (2) Focus on detecting misconfig-
uration based on the type inference of the source code. (3) lack of adaptable
detection that works on configurations inherited from different systems or incor-
rect settings that fall into normal ranges.

7 Conclusions and Future Work

The paper presented a controller that detects misconfigurations of container-
based clusters and edge devices in hierarchical computing environments. The
controller mapped observable quality concerns onto hidden settings to track
misconfiguration paths and enforced access to informational constraints derived
from healthcare legislation. The controller used the Hierarchical HMM mecha-
nism and extended its mechanism to propose an access control policy model to
increase the flexibility of role-based access control so that users can gain access
to resources with regard to the model constraints, and the permissions could
be adjusted based on user and environment conditions. Compared with other

168 A. Samir et al.

techniques, the evaluation presented the ability of the controller to detect mis-
configurations with few false positive instances and promised log-likelihood. The
purpose of the paper is to introduce the controller mechanism by providing its
main processes and evaluations to assess its reliability and performance.

In the future, our objective is to carry out more experiments to confirm the
results concluded, highlight the difference between the controller detection and
other misconfiguration tools, improve the security of the access control model
to handle system failure, and expand the evaluation of access control and policy
rules.

References

1. Alspach, K.: Major vulnerability found in open source dev tool for
kubernetes (2022). https://venturebeat.com/security/major-vulnerability-found-
in-open-source-dev-tool-for-kubernetes/

2. Assuncao, L., Cunha, J.C.: Dynamic workflow reconfigurations for recovering from
faulty cloud services, vol. 1, pp. 88–95. IEEE Computer Society (2013)

3. Chiba, T., Nakazawa, R., Horii, H., Suneja, S., Seelam, S.: Confadvisor: a
performance-centric configuration tuning framework for containers on kubernetes,
pp. 168–178 (2019)

4. Fairwinds: Kubernetes benchmark report security, cost, and reliability workload
results (2023). https://www.fairwinds.com/kubernetes-config-benchmark-report

5. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: analysis
and applications. Mach. Learn. 32, 41–62 (1998)

6. Gantikow, H., Reich, C., Knahl, M., Clarke, N.: Rule-based security monitoring
of containerized environments. In: Ferguson, D., Méndez Muñoz, V., Pahl, C.,
Helfert, M. (eds.) CLOSER 2019. CCIS, vol. 1218, pp. 66–86. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-49432-2 4

7. Haque, M.U., Kholoosi, M.M., Babar, M.A.: Kgsecconfig: a knowledge graph based
approach for secured container orchestrator configuration, pp. 420–431. Institute
of Electrical and Electronics Engineers Inc. (2022)

8. Hicks, M., Tse, S., Hicks, B., Zdancewic, S.: Dynamic updating of information-flow
policies, pp. 7–18 (2005)

9. Hu, Y., Huang, G., Huang, P.: Automated reasoning and detection of specious
configuration in large systems with symbolic execution, pp. 719–734 (2020)

10. Kermabon-Bobinnec, H., et al.: Prospec: proactive security policy enforcement for
containers, pp. 155–166. Association for Computing Machinery, Inc. (2022)

11. Lakshmanan, R.: Microsoft confirms server misconfiguration led to 65,000+ com-
panies’ data leak (2022). https://thehackernews.com/2022/10/microsoft-confirms-
server.html

12. Mahajan, V.B., Mane, S.B.: Detection, analysis and countermeasures for container
based misconfiguration using docker and kubernetes, pp. 1–6. Institute of Electrical
and Electronics Engineers Inc. (2022)

13. Moothedath, S., et al.: Dynamic information flow tracking for detection of advanced
persistent threats: a stochastic game approach. arXiv:2006.12327 (2020)

14. NVD: Cve-2019-5736 (2019). https://nvd.nist.gov/vuln/detail/CVE-2019-5736
15. NVD: Cve-2019-6538 (2019). https://nvd.nist.gov/vuln/detail/CVE-2019-6538
16. NVD: Cve-2020-10749 (2020). https://nvd.nist.gov/vuln/detail/cve-2020-10749

https://venturebeat.com/security/major-vulnerability-found-in-open-source-dev-tool-for-kubernetes/
https://venturebeat.com/security/major-vulnerability-found-in-open-source-dev-tool-for-kubernetes/
https://www.fairwinds.com/kubernetes-config-benchmark-report
https://doi.org/10.1007/978-3-030-49432-2_4
https://thehackernews.com/2022/10/microsoft-confirms-server.html
https://thehackernews.com/2022/10/microsoft-confirms-server.html
http://arxiv.org/abs/2006.12327
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-6538
https://nvd.nist.gov/vuln/detail/cve-2020-10749

Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 169

17. NVD: Cve-2022-0811 (2022). https://nvd.nist.gov/vuln/detail/cve-2022-0811
18. Pranata, A.A., Barais, O., Bourcier, J., Noirie, L.: Misconfiguration discovery with

principal component analysis for cloud-native services, pp. 269–278. Institute of
Electrical and Electronics Engineers Inc. (2020)

19. Rahman, A., Shamim, S.I., Bose, D.B., Pandita, R.: Security misconfigurations in
open source kubernetes manifests: an empirical study. ACM Trans. Softw. Eng.
Methodol. 1–37 (2023)

20. Samir, A., Dagenborg, H.: A self-configuration controller to detect, identify, and
recover misconfiguration at IoT edge devices and containerized cluster system, pp.
765–773 (2023)

21. Samir, A., Ioini, N.E., Fronza, I., Barzegar, H., Le, V., Pahl, C.: A controller for
anomaly detection, analysis and management for self-adaptive container clusters.
Int. J. Adv. Softw. 12, 356–371 (2019)

22. Santolucito, M., Zhai, E., Dhodapkar, R., Shim, A., Piskac, R.: Synthesizing con-
figuration file specifications with association rule learning. Proc. ACM Program.
Lang. 1 (2017)

23. Sorkunlu, N., Chandola, V., Patra, A.: Tracking system behavior from resource
usage data, vol. 2017-Sept, pp. 410–418 (2017)

24. Taft, D.K.: Armo: misconfiguration is number 1 kubernetes security risk (2022).
https://thenewstack.io/armo-misconfiguration-is-number-1-kubernetes-security-
risk/

25. Venkat, A.: Misconfiguration and vulnerabilities biggest risks in cloud security:
report (2023). https://www.csoonline.com/article/3686579/misconfiguration-and-
vulnerabilities.html

26. Wang, T., Xu, J., Zhang, W., Gu, Z., Zhong, H.: Self-adaptive cloud monitoring
with online anomaly detection. Futur. Gener. Comput. Syst. 80, 89–101 (2018)

27. Xu, T., Jin, X., Huang, P., Zhou, Y.: Early detection of configuration errors to
reduce failure damage, pp. 619–634. USENIX Association (2016)

28. Zhang, J., Piskac, R., Zhai, E., Xu, T.: Static detection of silent misconfigurations
with deep interaction analysis. Proc. ACM Program. Lang. 5, 1–30 (2021)

29. Zhang, J., et al.: Encore: exploiting system environment and correlation informa-
tion for misconfiguration detection, pp. 687–700 (2014)

https://nvd.nist.gov/vuln/detail/cve-2022-0811
https://thenewstack.io/armo-misconfiguration-is-number-1-kubernetes-security-risk/
https://thenewstack.io/armo-misconfiguration-is-number-1-kubernetes-security-risk/
https://www.csoonline.com/article/3686579/misconfiguration-and-vulnerabilities.html
https://www.csoonline.com/article/3686579/misconfiguration-and-vulnerabilities.html

Adaptive Controller to Identify
Misconfigurations and Optimize

the Performance of Kubernetes Clusters
and IoT Edge Devices

Areeg Samir(B) and H̊avard Dagenborg

Universitetet i Tromsø - Norges arktiske universitet, Hansine Hansens veg 18, 9019
Tromsø, Norway

areeg.s.elgazazz@uit.no

Abstract. Kubernetes default configurations do not always provide
optimal security and performance for all clusters and IoT edge devices
deployed, affecting the scalability of a given workload and making them
vulnerable to security breaches and information leakage if misconfigured.
We present an adaptive controller to identify the type of misconfiguration
and its consequence threat to optimize the system behavior. Our work
differs from existing approaches as it is fully automated and can diagnose
various errors on the fly. The controller is evaluated in terms of quality
and accuracy of identification. The results show that the controller can
identify around 90% of the total number of configuration values with a
reasonable average identification overhead.

Keywords: Misconfiguration · Threats · Identification · IoTs ·
Clusters · Markov Processes · Security · Performance

1 Introduction

Misconfiguration is an incorrect configuration(s) within the parameters of system
components (i.e., system clusters, IoT edge devices) that may lead to vulnera-
bilities and affect system workload and performance at different levels. At the
edge level, a misconfigured edge device opens the potential for security breaches.
For instance, if an edge device runs with default privileges or the same privileges
as the application, vulnerabilities in any system’s component can be acciden-
tal (e.g., remote SSH open) or intentional (e.g., backdoor in component). At
the application level, a misconfigured container (e.g., network port open) allows
an attacker to exploit the Docker API port that escalates the attack to other
containers and hosts. At the cluster level, misconfigurations in core Kubernetes
components (e.g., API server, Kubelet, Kube-proxy) lead to the compromise
of complete clusters that cause network latency overheads, CPU throttling, or
container to run out of memory. The management of configurations has been

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 170–187, 2023.
https://doi.org/10.1007/978-3-031-46235-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_11&domain=pdf
http://orcid.org/0000-0003-4728-447X
http://orcid.org/0000-0002-1637-7262
https://doi.org/10.1007/978-3-031-46235-1_11

Analyzing Security Misconfigurations of Kubernetes and Kubedges 171

explored in the literature [2,4,8,10,15]. However, the complexity of misconfigu-
rations does not arise only from a large number of configuration parameters, but
also from their correlations and dependencies. The paper proposes a real-time
misconfiguration identification controller based on the fine-grained configuration
type category. The paper is organized as follows. Section 2 provides a background
of some concepts used in the paper. Section 3 presents related research. Section 4
provides examples of misconfigurations that motivate the paperwork. Section 5
presents the methodology followed to analyze misconfigurations and explains the
identification of configuration errors and their threats as a consequence accord-
ing to the identified configuration error cases. Section 6 evaluates the controller
and discusses the reported results. Section 7 concludes the paper and presents
the future direction of the work.

2 Background

Misconfigurations can lead to a variety of security threats and vulnerabilities.
This section gives an introduction to the configuration and Hidden Markov
Model that can be used to analyze the behaviors of the system components
to identify potential threats.

2.1 Configurations

Configurations are a list of entries or parameters, in terms of key-value pairs, a
list, and a map, that define the configurations for an object (e.g., cluster, node,
pod, container, service, user) and manage its deployment. Configurations are
stored in a configuration file that contains basic information about a cluster,
and are written in a user-friendly YAML syntax format that is called ‘mani-
fest’. The configuration file is stored in version control before being pushed to
the cluster to simplify the rollback of a configuration change, aids cluster re-
creation and restoration. The configuration file has to contain four main entries,
which are apiVersion (i.e., used to create the Kubernetes object), kind (e.g.,
Pod, Deployment, Service, Job, or DemonSets), metadata (unique properties of
an object such as name, namespace, and label entries), and spec (i.e., specifi-
cation, defines the operation of an object and depends upon the apiVersion).
Kubernetes cluster uses configuration files to create an object based on a set
of defined configurations. By concentrating on developing YAML configuration
management, we can reduce configuration errors and vulnerabilities, resulting in
improved cluster security and stability.

2.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model that is used to describe
a system that evolves over time and generates observable data sequences. It is
widely applied in various fields, such as security. An HMM consists of two main
components: (1) hidden states, which are the underlying, unobservable states of
the system that transition from one state to another over time. The system is

172 A. Samir and H. Dagenborg

assumed to be in one of these hidden states at any given time. (2) Observable
emissions, which are the observable outcomes associated with each hidden state.
These observations are what we can measure or observe, and they provide informa-
tion about the underlying hidden states. HMMs are often used for threat detection
and anomaly detection to identify patterns of behavior that deviate from normal
or expected behavior, which could indicate potential threats or attacks. Thus, uti-
lizing the HMM-based detection system provides a comprehensive threat identi-
fication strategy specifically for attacks caused by configuration errors.

3 Related Work

Configuration error analysis is crucial for maintaining the stability, performance,
and security of a system. Current frameworks have not focused sufficiently on the
essential aspect of effectively handling misconfigurations in edge devices and clus-
ters [4,22]. Since most tools work with predefined constraint templates, unlike
our work, the following techniques lack of an adaptive misconfiguration iden-
tification that works with different types of errors, which makes configuration
management a challenging task, especially when considering heterogeneous hard-
ware and software stacks in cluster and edge environments.

To optimize and manage the configurations of containers running in a Kuber-
netes cluster, configuration framework solutions with a focus on performance are
presented [2,23]. These solutions focused on detecting configuration errors by
analyzing the source code and generating the configuration check code. Main-
tenance overhead can occur with large data sets and can be time-consuming in
multicomponent applications, especially in scale and load-balance environments.
In such complex environments, there are often multiple layers of configuration,
including their configuration parameters and interactions, leading to more com-
plexity [23]. For example, configuring network policies involves defining how pods
communicate with each other and other endpoints. An incorrect combination of
policies can inadvertently block traffic or create security vulnerabilities.

In addition, misconfigurations can have detrimental effects in scenarios where
load balancing and resource allocation are critical. For example, setting too
high memory or CPU limits for a particular service might cause contention for
resources among different services running on the same infrastructure [1]. Incor-
rect configurations can lead to bottlenecks in data traffic at the network level
and open suspicious flows in the system [10]. Rules-based security techniques are
used to detect misconfigurations and optimize system performance [5,9], how-
ever, checking every constraint is time-consuming and can lead to more errors.
An analysis of misconfiguration helps to detect which parts of the system are
associated with configuration parameters. This could be achieved by deriving
the specification of the configurations by designing a custom control and data
flow analysis targeting the configuration-based code [6,24], based rule [20], or
based inference [25]. However, those ways are highly specialized, as some of them
only focus on security, they are not simple to write and maintain, and they are
geared towards a host only instead of container images and edge devices, which
might result in the occurrence of false positives or false negatives.

Analyzing Security Misconfigurations of Kubernetes and Kubedges 173

4 Motivation Examples

Any configuration error (Misconfiguration) can lead to privilege escalation, con-
tainers running as root, and other critical vulnerability issues that have negative
consequences on security, efficiency, reliability, and performance. For example,
some wireless access points may have outdated or insecure wireless security
services enabled (e.g., WEP or WPS) by default. Such standards could allow
attackers within range of the device to gain access to the network. Since data
are also often transmitted via an insecure protocol (e.g., FTP, HTTP, etc.) by
default, some of it may be exposed to an attacker with such access. If creden-
tials or encryption keys are captured, the initial access gained through these
default settings could lead to further access to systems within the network or
the ability to read encrypted data. For example, suppose that we have a clus-
ter with three nodes that do not act as host control planes. Cluster nodes have
some pods and a set of deployed containers with privilege and access control
settings, such as privilege access (e.g., allowPrivilegeEscalation), as shown in
Fig. 1. This setting controls whether a process can gain more privileges than its
parent process, and it is always true when the container is run as privileged, or
has CAP SYS ADMIN. Here, a user root inside a container will have the same
access as the root on the host system, allowing an attacker with root access
in the container to gain access to the nodes, steal the secrets of their running
containers, and exploit flaws in the cluster. The severity of the attack is highly
rated with a score of 7.0 according to the level of severity of the CVE.

Fig. 1. Setting-Value Dependency Cascading Failure in YAML

In addition, any incorrect value might create a failure that can be cascaded if
the failure in one component or resource setting impacts other dependent compo-
nents or resources. For example, as shown in Fig. 1, the service should reference
the Deployment with the selector field, specifying the labels that correspond to
the deployment pod. However, the selector field is given an incorrect value. The

174 A. Samir and H. Dagenborg

selector field is set to app: app in the Service, which does not match the value
of the label app: myapp used in the Deployment. This wrong value enables Ser-
vice to incorrectly target deployment pods. Such settings cause service discovery
and routing failures as the service cannot correctly track the deployment pod to
establish dependency between the two resources.

To identify the type of misconfiguration, we extracted the configuration error
settings of the anomalous component only to reduce the complexity of identifi-
cation, as shown next.

5 The Proposed Approach

This section extends the controller misconfiguration analysis phases (monitor,
detection) to identify the type of misconfigurations and their threat consequence
based on the output of the detection phase in [17].

5.1 Methodology of Misconfigurations Analysis

To analyze misconfigurations, the controller has 4 main phases, which are moni-
tor, detection [17], identification, and recovery [18]. This paper aims to introduce
the identification phase.

We ran the controller on a set of manifest YAML files to inspect configuration
errors in edge devices and clusters and sent a warning message for any devia-
tions from the configuration settings; more details are given in [17]. The YAML
manifest files were inspected on the basis of Kind and APIVersion keys using
Kubernetes utilities. We received warning messages for configuration parameters
violating specified rules with approximately 36,709 configuration errors contain-
ing around 2090 unique errors from 3000 apps. Many of those errors were sim-
ple misconfigurations that could be avoided by developers, such as edge device
default settings (e.g., accounts passwords) were not changed, or sensitive medi-
cal data being leaked due to the enabling of privilege escalation. We also found
several errors which have serious consequences such as the port of the etcd server
(Kubernetes database) not encrypted and accessible via plain HTTP, the failure
to update software patches, the system network as KubePi was not configured
properly or the pod was constantly crashing in an endless loop. Only 1087 apps,
among the apps studied, had no configuration errors.

Based on that, we identified the categories of misconfigurations in the mani-
fests and the sensors that were on our device by getting a reference to the sensor
service to list all the sensors on the device of type. We focus on analyzing the
configurations defined in the application manifest file, including components,
enforced permissions, exported attribute values, and intent filters. We focus on
the most common misconfigurations that negatively impact system components’
workload and cause performance degradation on performance metrics (applica-
tion domain metrics and system-specific metrics).

The metrics are kept within acceptable limits using dynamic thresholds to
avoid degradation of system performance and maintain continuous delivery [19].

Analyzing Security Misconfigurations of Kubernetes and Kubedges 175

We collected data from the metrics into a two-dimensional matrix which formed
our data set; the columns refer to the metrics, and the rows refer to the com-
ponents. Then we derived the relationship between the performance of the com-
ponents, the workload, and the misconfigurations to detect the misconfigura-
tions for the applications deployed in the hierarchical system settings [17]. The
controller detects the hierarchical path(s) that show anomalous behavior (e.g.,
overload) and tracks the misconfigured components under the constraints of
the extracted configurations. We checked the configuration security settings and
detected misconfigurations in the vulnerable path. For edge devices, the con-
figuration check was performed on authorized devices that had legal access to
the system and were assigned to authorized participants. The detection is based
on statistical learning that can detect misconfigurations based on the learned
configuration settings and can be used for real-time misconfiguration detection
to quickly reduce the negative imprint on the system. The following represents
the steps of misconfiguration detection [17] and identification by the controller:

Training Phase. During the training phase, the configurations are collected
in terms of labeled training sets to train the controller. The controller learns
the patterns and relationships between various configuration settings and their
corresponding outcomes to characterize correct and incorrect configurations. For
example, if a certain setting is known to cause conflicts or performance issues,
the controller learns to identify such patterns. Feature extraction: Relevant
settings are extracted from the configuration data, such as specific settings,
parameters, or dependencies. These features provide the input for the controller.
Model training: The controller is trained using the extracted features to iden-
tify the patterns and rules associated with the correct configurations and detect
deviations that can indicate errors. Real-time detection: Once the controller
is trained, it can monitor and analyze the new configuration settings in real time.
When a new configuration is encountered, the controller evaluates it against the
learned rules and patterns to detect any misconfiguration; more details are given
in [17]. Prompt error detection and mitigation: When a configuration error
or anomaly is detected, an alert is generated to prompt corrective action as our
proposed recovery process in [18]. Continuous learning and improvement:
The controller continues to learn from new configurations and adapts to chang-
ing settings or emerging errors to improve its detection capabilities and accuracy
over time. The result of the detection is used to identify the type of misconfigu-
ration to locate its root cause through the configuration error-failure cases and
the identification phase, as shown in the following sections. The phase aims to
track the dependency between misconfigurations in edge devices and clusters of
the system to show its impact on performance and workload, and to demonstrate
the impact of misconfigurations on resource vulnerability.

5.2 Configuration Error-Failure Cases

To identify the type of misconfigurations, we focused on identifying common
security misconfigurations (Errors) in Kubernetes, Azure, and Docker Swarm

176 A. Samir and H. Dagenborg

that negatively cause anomalous workload (Fault) and dramatically saturate
monitoring metrics (Failure) of system components. We achieved this by focus-
ing on misconfigurations reported in 2023 and 2022 by the CVE, NIST, OWASP,
Fairwinds, ENSA, CIS Docker, and Kubernetes benchmarks. We targeted those
benchmarks, as they provide a systematic analysis that addresses key archi-
tectural vulnerabilities and platform dependencies of such tools. The bench-
mark used artifacts reported by DevOps, Azure, Kubernetes, Google Kubernetes
Engine, Docker Swarm, Amazon Elastic Kubernetes Service, Oracle, Google
Cloud, Microsoft, and Alibaba practitioners. The benchmarks go through two
stages of consensus review and evaluation of the results of security misconfig-
urations that alter the dependability, security, and cost of more than 150,000
workloads from hundreds of businesses.

We classified the types of misconfiguration into cases and we linked hidden
settings of configuration errors and their faults in the system under observation
to their observed failures, which are sequences of observations emitted by sys-
tem resources. The type of misconfiguration falls under three main error failure
cases: (1) IoT edge failure is due to a device failure that occurred during run-time
or during provision and deployment. Edge device misconfigurations were clas-
sified as impaired communications, indicating limited communication between
the device and the service, or non-sensor data, indicating that a device has com-
munication with the service but only reports partial sensor data. (2) application
failure is due to a pod or container failure, and (3) node or cluster failure relates
to a core component failure. We used the IEEE Standard Classification for Soft-
ware Anomalies [7] to analyze observed failures in multiple dimensions: Failure
ID (unique identifier for the failure type and its category), Failure Description
(describe an observed behavior), Failure Analysis (describe and analyze failure’s
root-cause), and Failure Severity (in percentage) relating to the system per-
formance and reliability in terms of the objectives that were not met by the
observed metrics and benchmarks. We used Key Performance Indicators (KPIs)
to determine whether the motoring metrics met the maintenance goals and the
system’s performance (e.g., resource utilization, latency, response time, network
congestion, throughput). The higher the value, the more severe the impact on
system performance will be [3,21].

The following cases refer to observed failures that are either emitted by an
administrative operation internal to Kubernetes, Azure, and Docker Swarm or
emitted by a trigger external to them as follows:

IoT Edge Cases. It refers to IoT edge failure that occurs during run time or
during provision and deployment such as:

Case 1: Sudden Stop of the Edge Device. Failure ID: ConfEC1. Failure Descrip-
tion: The edge device stopped for a specific period (e.g., minutes) after running
successfully. The logs indicated that the device failed to connect to the IoT hub
via AMQP or WebSocket and that the edge device existed. Failure Analysis: A
misconfiguration of the host network prevented the edge agent from reaching the

Analyzing Security Misconfigurations of Kubernetes and Kubedges 177

network. The agent attempted to connect over AMQP (port 5671) or WebSock-
ets (port 443) as the edge device runtime set up a network for each module to
communicate, either using a bridge network or NAT. Failure Severity: 70%.

Case 2: Empty Configuration File. Failure ID: ConfEC2. Failure Description:
The device has trouble starting the modules defined in the deployment. Only
the edge agent is running, but it continually reports empty configuration files.
Failure Analysis: The device may have trouble with the resolution of the DNS
server name within the private network. Failure Severity: 20%∼30%.

Case 3: Edge Hub Failure. Failure ID: ConfEC3. Failure Description: The Edge
Hub module does not start. Failure Analysis: Some process on the host machine
has bound a port to which the edge hub module is trying to bind. The Edge
hub maps ports 443, 5671, and 8883 for use in gateway scenarios. The module
fails to start if another process has already bound one of those ports. Failure
Severity: 20%∼30%.

Case 4: Default Credentials. Failure ID: ConfEC4. Failure Description: The
default accounts/passwords of the edge device are not changed. Failure Analysis:
Using vendor-supplied defaults for accounts and passwords could allow attack-
ers to brute-force and gain unauthorized access to the system. Failure Severity:
98%∼99%.

Application Cases. It refers to the occurrence of failure due to the failure of
a pod or container as follows:

Case 1: Privilege Escalation Flaw and Redeployment Fail. Failure ID: ConfAC1.
Failure Description: Sensitive medical data was leaked. Failure Analysis:
An Azure function (e.g., SCM RUN FROM PACKAGE) gave access to the
remapped root and allowed privilege escalation to the root level. Failure Severity:
80%∼90%.

Case 2: Privilege Escalation Flaw. Failure ID: ConfAC2. Failure Description:
Sensitive medical data was leaked. Failure Analysis: A docker engine function
option (e.g., users-remap) gives access to the remapped root and allows privilege
escalation to the root level. Failure Severity: 80%∼90%.

Case 3: Unauthenticated Connection. Failure ID: ConfAC3. Failure Description:
Kubernetes labels are not validated or incorrectly typed. Failure Analysis: Priv-
ilege access to Kubelet, which allows unexpected routing from service target
selectors. Failure Severity: 40%∼60%.

Case 4: Outdated Package and Flow Unpatched. Failure ID: ConfAC4. Failure
Description: The software is outdated and flaws are unpatched. Failure Analysis:
Failure to update software patches as part of the software management process,
allowing attackers to inject malicious code into the application. Failure Severity:
80%∼90%.

178 A. Samir and H. Dagenborg

Case 5: Loop Crash. Failure ID: ConfAC5. Failure Description: The pod is con-
stantly crashing in an endless loop and cannot be started. Failure Analysis: A
server cannot load the configuration file due to a typo in a configuration file
system. Failure Severity: 80%∼90%.

Core Components Cases. It indicates the occurrence of a failure at a node
or cluster level.

Case 1: Spike Traffic Received by System. Failure ID: ConfCC1. Failure Descrip-
tion: System services do not work properly and its resources are excessively
saturated. Failure Analysis: Distributed Denial of Service (DDOS) attack pre-
vents access to the system network, as KubePi is not configured correctly. Failure
Severity: 98%∼99%.

Case 2: Data Leakage. Failure ID: ConfCC2. Failure Description: Sensitive med-
ical data was leaked. Failure Analysis: The deployment of highly sophisticated
malware leads to compromise of sensitive medical data. Ingress allowed unau-
thorized users to access and update all secrets in the cluster. Failure Severity:
98%∼99%.

Case 3: Anonymous Authentication. Failure ID: ConfCC3. Failure Description:
Unauthenticated requests can be sent to Kubelet, as its configuration is not set
properly, which saturated the system resources. Failure Analysis: The misconfig-
ured Kubernetes core component gave unauthorized access to the entire cluster.
Failure Severity: 80%∼99%.

Case 4: Non-Secure Cluster Transmittance. Failure ID: ConfCC4. Failure
description: The etcd server port (Kubernetes database) is unencrypted and
accessible over plain HTTP. Failure Analysis: The etcd process on the master
node exhausts all memory, as the etcd cluster is left without authentication,
allowing a DDOS attack to gain unauthorized access to a system. Failure Sever-
ity: 80%∼99%.

At the end of this step, misconfiguration description profiles for the cases are
created and stored to be used in the identification phase along with the output
of the detection phase, which provides the path of the hierarchical anomalous
misconfigured components that are affected by specific components.

5.3 Misconfiguration Identification Phase

The controller uses the output of the detection phase as input for the identifica-
tion phase. For example, AnomalousPath = {Cluster > Node22 > Node23 >
Container33 > Service43} is a hierarchy anomalous path that is affected by
Node23 with the vertical level index 2 and horizontal level index 3 in the graph,
respectively. On the basis of that, we initialized a model with the configura-
tion settings of the anomalous states and observations obtained. The model is

Analyzing Security Misconfigurations of Kubernetes and Kubedges 179

created with a graph length of states ConfLeng = (Confij , .., ConfNj) and
the length of observations FLeng = {F1, .., FT }, which are stored in a matrix
ConfMat[ConfLeng, FLeng]. To show the dependency between misconfigu-
rations, each Confij represents the misconfigured settings that belong to the
anomalous state that has vertical i and horizontal j levels. For each Confij ,
as shown in Fig. 2, we checked the type of misconfiguration, which is hidden
from the observer considering the state level in the defined failure-error cases
(ConfEC , ConfAC , ConfCC).

The configuration settings (key-value pairs) were extracted from the man-
ifest of the anomalous state based on the Kind and API version objects. A
state check function denoted SC checks the misconfigured settings against cen-
trally managed correct configuration settings stored in Knowledge storage. We
iterated through the manifest settings to check the key-value pairs. For each
pair, we calculated the confidence score taking into account the type of key
with (p-value � 0.05) to validate our hypothesis against the difference between
manifests. A low confidence score indicates a difference between the configura-
tion settings for the anomalous state. The difference between the configuration
obtained from the anomalous state (actual state) and the correct configuration
(desired state) represents the incorrectly configured state that is likely to be tar-
geted for exploitation by attackers. For the desired state, management data from
the configuration settings were recorded, such as privilege, default accounts and
their passwords, unnecessary ports, certificates, unpublished URLs, validation
rules, default namespace, and version (e.g., deprecated API).

In case the misconfiguration is not defined within the cases, the controller
records the new characteristics of the misconfiguration type and assigns unique
identifiers (i.e., Failure ID, Label, component relationship information, and case
type) to the selected items. The identification result is stored in the knowledge
storage to enhance the identification process.

5.4 Threat Type Identification Under Misconfiguration

We are mainly concerned with threats that occur due to misconfiguration and
cause data breaches and information leakages, such as botnets, ransomware,
amplification, flooding, and protocol exploration. We created description pro-
files for each type of threat that include information about the threat (type,
description, source, technique, configuration setting relation, and mitigation).
We considered that the types of threats are hidden; thus, we employed the Hid-
den Markov Model (HMM) [16] to predict hidden threats because of its ability
(1) to capture dynamic patterns by allowing the hidden states to transition
between different states, reflecting changes in threat behavior. (2) to establish
a baseline of normal behavior and then identify deviations from this baseline as
potential threats. (3) update the model in the future to adapt to changing threat
landscapes. (4) to incorporate data from multiple sources.

The controller maps the anomalous path obtained from the detection phase
(Cluster > Node22 > Node23 > Container33 > Service43) to a set of states
(St1 > St2 > St3 > St4 > St5) to be fed to the model. Then, it adds a start

180 A. Samir and H. Dagenborg

Fig. 2. Misconfigurations and Threats Identification Type

state St0 and an end state StEnd to the abnormal path (St0 > St1 > · · · >
St5 > StEnd) to capture the entire information flow within that path. The
controller checks the existence of a threat Ae using the SC function. If a threat
exists, the model checks its type Ai according to the observations emitted (A1:
botnet, A2: flood, A3: amplification, A4: protocol exploit, A5: ransomware). For
each threat A, we initialize the parameters of the state of the model Ai and
the observations F{1,···,T} through a graph length of the threat states APN and
observation length T to track the duration of the threat states and identify them
in a timely manner.

The probability of Ai is calculated assuming that a threat starts in the ini-
tial state St1 and might spread from one state to another. The probabilities
of Ai and observations F{1,···,T} are stored in matrix ATI. We calculate the
probability F by summing the previous forward path probability of the previous
time step t − 1, weighted by their transition probabilities AprobA′ ,A, and multi-
plying by the observation probability FprobA(Ft). We sum the probabilities of
all possible threats {Ai, · · · , AN} that could generate the observation sequence
F{1,t+1,···,T}. Each A represents the probability of being in Ai after seeing the
first Ft observations, as shown in Algorithm 1.

Analyzing Security Misconfigurations of Kubernetes and Kubedges 181

Transition probabilities equal to 0 are omitted since not all previous states con-
tributed to the forward probability of the current state. Each St has a probabil-
ity value reflecting the probability of a given abnormal behavior. The assumption
is that a sufficiently low probability (abnormal flow) value indicates a potential
threat. The decision is made by calculating a threat score ThreatScore for each St
and the whole abnormal path (St1 > St2 > St3 > St4 > St5). As shown in (1)–
(3), the ThreatScore for St is derived from the probability values returned by the
detection model ℘ associated with St. The threat score value is calculated using a
weighted sum

∑w
St=1. The weight ω associated with the model is represented by

ωRPV , while MRPV is the probability value returned by the model. The probabil-
ity MRPV is subtracted from 1 (1−MRPV) because a value close to zero indicates
a threat that should produce a high threat score. The weight ω is calculated con-
sidering the state transition probability of the type of hidden threat Aprobij and
the observation probability Fprobt. The highest threat score is stored, and then
the threshold is set to an adjustable percentage higher than the maximum score
obtained, so that a user can adjust the sensitivity of the state check in terms of the
number of false positives and the expected detection accuracy. The state is marked
as vulnerable when ThreatScore exceeds a predefined threshold. Once we identify
the type of threat, the model transits to the next state to check the existence and
type of potential threat for that state (if any); otherwise, the model returns to the
state check SC to check the next state.

The process is repeated until we reach the end of the abnormal path St5.
Then the model progresses to the end state StEnd, ending the threat identifica-
tion process. The derived hidden types of misconfiguration and threat are shown
in Table 1.

182 A. Samir and H. Dagenborg

ThreatScore =
w∑

St=1

ωRPV × ℘ (1)

ω =
∑

RPV ∈AImodels

Fprobt × Aprobij (2)

℘ = (1 − MRPV) (3)

Table 1. Misconfiguration and Threat Identification

Abnormal Flow Path St1 > St2 > St3 > St4 > St5

Vulnerable Component St2

Misconfigured Component N23

Misconfiguration Type ConfCC3

Threat Type A1

6 Evaluations and Results Analysis

This section evaluates the identification of the controller, focusing on measuring
its performance in terms of quality and accuracy.

6.1 Environment Settings Description

The controller ran on a virtual machine equipped with Linux OS (Ubuntu 18.10
version), a VCPU, and 2 GB of VRAM. The virtual platform is allocated to a
physical PC equipped with Windows 11, Intel Core i7-1260P 2.10 GHz, and 32
GB of RAM. A set of agents was installed to collect data on CPU, memory,
network, and changes in the file system (i.e., no flow issued to the component).
The agent adds a data interval function to determine the time interval to which
the collected data belong. The Datadog tool is used to obtain a live data stream
for the running components and to capture the request-response tuples and asso-
ciated metadata. Prometheus is used to group the collected data and store them
in a time series database using Timescale-DB. The size of our generated data
set was approximately 10 MB with a period of 6 months. We selected a subset
of the data set of around 4.3 MB mainly related to the types of misconfiguration
mentioned in Misconfiguration Scenarios to train the models and provide more
targeted and specialized training data sets. Data are divided into 70% training
data and 30% testing data. More details about environment evaluation settings
can be found in [17].

Analyzing Security Misconfigurations of Kubernetes and Kubedges 183

6.2 Misconfiguration Scenarios

We trained our models during the evaluation on some of the types of misconfigu-
ration identified that allow privilege escalation at IoT edge device level [12] and at
the container cluster level [11,13,14]. These types of errors excessively consume
the usage of system resources (CPU, memory, network) as they dramatically
increase the request latency and decline the request rate. The configuration files
of the components are stored in GitOps version control to simplify the rollback
of configuration changes.

6.3 Threat and Workload Scenarios

The threat scenario is based on the misconfiguration scenarios that lead to vul-
nerability in IoT edge devices and Kubernetes. The aim is to simulate the attack
that could occur due to misconfiguration. The controller performance was tested
in hybrid traffic, combining attack data generated by the tools at different levels.
At the edge level, the IoT-Flock tool is used to generate normal and abnormal
flow (threat) of IoT edge devices in a real-time network. At the container level, a
Distributed Internet Traffic Generator (D-ITG) tool is used to generate normal
and abnormal flow at the network, transport, and application layers with various
packet sizes and a variety of probability distributions. We used OWASP-ZAP to
simulate an attacker’s attempt at vulnerable containers.

6.4 Identification Assessment

Assessment1: Identification Quality and Accuracy. We extracted around
2090 real-world Kubernetes configuration files from version control repositories
such as GitLab and GitHub, with 550 and 1540 files, respectively. The settings
of the extracted files were valid in terms of format and syntax. We focus on
the types of misconfiguration related to the misconfiguration cases mentioned
in the paper that lead to system performance degradation, which were 279 and
1016 true positive configuration errors from GitLab and GitHub, respectively,
identified by the controller. The controller reported other configuration errors;
however, in this evaluation, we focused only on errors due to privilege escala-
tion. Around 181 configuration errors in the true positives reported were due
to privilege escalation, 109 from GitHub, and 72 from GitLab. The controller
reported 16 false alarms, which occurred due to incorrectly skipping conditional
instructions affected by the configuration value such as non-existent paths (e.g.
invalid image repository path), unreachable IP addresses, or referencing a non-
existent-configmap. Hence, to measure the quality of the identification process,
we split the normal behavior sequences into correct configurations using a slid-
ing window and then further learn the controller. For testing, the first step is
to split the test sequence into small segments and to calculate the probability
under normal behavior. We analyzed the results with different window sizes (in
hours) and state transitions by computing the Configuration Error Rate (CER),
which divides the total number of unequal key-value pairs of data elements by

184 A. Samir and H. Dagenborg

the total number of data elements from one component to quantify the number
identification error made by the controller with respect to the actual values.
The total CER was approximately 10%, indicating that the model incorrectly
identified 10% of the total elements.

Assessment2: Identification Overhead. We measured the controller’s per-
formance baseline metrics (e.g., throughput, latency, CPU, memory, response
time) under normal settings without configuration errors, workload, and with-
out a configuration error detection mechanism enabled. The normal settings were
approximately 70% and 35% for CPU and memory, respectively, the average
response time was between 100 and 170 microseconds per request, 100 trans-
actions/second of throughput, and 130 milliseconds of latency. We created the
configuration error [13] at the container cluster level, which severely saturated
the system resources to be 95% and 76% for CPU and memory, respectively,
the average response time of 600 microseconds, the transaction per second of
throughput, and the latency of 500 milliseconds. We measured the identification
overhead as the time needed to identify the misconfigurations by measuring the
execution time before and after the controller invocation. The average identifi-
cation time taken by the controller was 301.8 milliseconds, which returned to
the network and file-related checks.

6.5 Misconfiguration Identification Accuracy Under Threats

We measured the accuracy of the model identification under different miscon-
figurations (Test1 [13], Test2 [14], and Test3 [12]), threat and workload test
scenarios, and under various window sizes during the learning process. We cal-
culate the threat ratio (TR) to count the number of components identified as
compromised due to misconfiguration during time intervals to the total number
of components of the system and report the result as a percentage. As shown
in Table 2, the TR under different tests represents a specific diversity. When
the size of the sliding window is greater than 6, the TR improves, but the rela-
tionship between the size of the data set and the threat ratio is not always
linear. Hence, to ensure accurate and unbiased identification, we measured TR
under different model transitions along the test scenarios. For each transition, we
applied the same data set used in the baseline transition to analyze the changes
in the TR between the baseline transition and the other model’s transitions. As
shown in Table 3, the model transitions significantly indicate a change in iden-
tification effectiveness, which indicates an improvement in threat identification
performance. To confirm the reported results, we further evaluated the unbiased
performance of the model transitions based on the number of true positives, false
positives, and false negatives of identification to measure precision, recall, and
F1-score. The identification precision, recall, and F1-score were 0.950, 0.932, and
0.974 respectively. The recall gives an interesting insight into the performance
of the controller in relation to the number of false identifications. It is important
to note that the reported results were delivered according to the type of test

Analyzing Security Misconfigurations of Kubernetes and Kubedges 185

scenarios for misconfiguration, threat, and workload, and the data set used to
learn the model.

Table 2. Threat Ratio with Different Windows Size in Hours

Windows Size 3 6 9 12

TR of Test1 8.17 5.49 3.07 0.21

TR of Test2 74.31 65.03 52.01 54.24

TR of Test3 43.09 54.29 45.24 35.09

Table 3. Threat Ratio Under Model Transitions

Transition Model Baseline-Transition Transition 1 Transition 2

TR of Test1 31.39 5.49 5.93

TR of Test2 74.01 54.88 55.93

TR of Test3 64.79 43.65 40.03

7 Conclusions and Future Work

The paper presented a controller for analyzing misconfigurations of container-
based clusters and edge devices in a hierarchical computing environment. The
aim is to propose the identification mechanism of the controller by defining a
set of configuration error cases that result in the emission of failures observed
through system performance metrics. The controller identifies the root cause
of the configuration error and its consequence threats to optimize the system’s
behavior to update configurations and prevent their future occurrences. The
paper evaluated the performance of the controller, focusing on accuracy and
quality. The results show that the controller can deliver a performance improve-
ment under different transitions with 0.950 precision.

In the future, we will provide technical details on the collection criteria,
quality, and diversity of the data set as the scope of this paper is to present
the identification phase mechanism. We plan to conduct comprehensive security
assessments to evaluate the proposed controller and compare its performance
against existing mechanisms under various types of configuration errors. We aim
to integrate the controller into the Kubernetes workflow and CI/CD pipeline to
catch invalid configurations and potential security vulnerabilities before deploy-
ment to maintain secure and reliable Kubernetes-based applications. Implement
a control strategy to track configuration changes and validate configurations
before applying changes to production clusters to improve cluster security and
stability. Combine multiple metrics to improve the accuracy of threat identifica-
tion.

186 A. Samir and H. Dagenborg

References

1. Assuncao, L., Cunha, J.C.: Dynamic workflow reconfigurations for recovering from
faulty cloud services, vol. 1, pp. 88–95. IEEE Computer Society (2013)

2. Chiba, T., Nakazawa, R., Horii, H., Suneja, S., Seelam, S.: Confadvisor: a
performance-centric configuration tuning framework for containers on Kubernetes,
pp. 168–178 (2019)

3. CWE: Common weakness enumeration category: Configuration (2023). https://
cwe.mitre.org/data/definitions/16.html

4. Fairwinds: Kubernetes benchmark report security, cost, and reliability workload
results (2023). https://www.fairwinds.com/kubernetes-config-benchmark-report

5. Gantikow, H., Reich, C., Knahl, M., Clarke, N.: Rule-based security monitoring
of containerized environments. In: Ferguson, D., Méndez Muñoz, V., Pahl, C.,
Helfert, M. (eds.) CLOSER 2019. CCIS, vol. 1218, pp. 66–86. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-49432-2 4

6. Hu, Y., Huang, G., Huang, P.: Automated reasoning and detection of specious
configuration in large systems with symbolic execution, pp. 719–734 (2020)

7. of the IEEE Computer Society, S.E.S.C.: IEEE standard classification for software
anomalies (ieee 1044–2009) (2010)

8. Lakshmanan, R.: Microsoft confirms server misconfiguration led to 65,000+ com-
panies’ data leak (2022). https://thehackernews.com/2022/10/microsoft-confirms-
server.html

9. Mahajan, V.B., Mane, S.B.: Detection, analysis and countermeasures for container
based misconfiguration using docker and Kubernetes, pp. 1–6. Institute of Electri-
cal and Electronics Engineers Inc. (2022)

10. Moothedath, S., et al.: Dynamic information flow tracking for detection of advanced
persistent threats: a stochastic game approach, June 2020. arXiv:2006.12327

11. NVD: Cve-2019-5736 (2019). https://nvd.nist.gov/vuln/detail/CVE-2019-5736
12. NVD: Cve-2019-6538 (2019). https://nvd.nist.gov/vuln/detail/CVE-2019-6538
13. NVD: Cve-2020-10749 (2020). https://nvd.nist.gov/vuln/detail/cve-2020-10749
14. NVD: Cve-2022-0811 (2022). https://nvd.nist.gov/vuln/detail/cve-2022-0811
15. Pranata, A.A., Barais, O., Bourcier, J., Noirie, L.: Misconfiguration discovery with

principal component analysis for cloud-native services, pp. 269–278. Institute of
Electrical and Electronics Engineers Inc., December 2020

16. Rabiner, L., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP
Mag. 3(1), 4–16 (1986)

17. Samir, A., Dagenborg, H.: A self-configuration controller to detect, identify, and
recover misconfiguration at IoT edge devices and containerized cluster system, pp.
765–773 (2023)

18. Samir, A., Dagenborg, H.: Self-healing misconfiguration of cloud-based IoT systems
using Markov decision processes, pp. 244–252 (2023)

19. Samir, A., Ioini, N.E., Fronza, I., Barzegar, H., Le, V., Pahl, C.: A controller for
anomaly detection, analysis and management for self-adaptive container clusters.
Int. J. Adv. Softw. 12(3&4), 356–371 (2019)

20. Santolucito, M., Zhai, E., Dhodapkar, R., Shim, A., Piskac, R.: Synthesizing con-
figuration file specifications with association rule learning. Proc. ACM Program.
Lang. 1(OOPSLA), 1–20 (2017)

21. Scarfone, K., Mell, P.: The common configuration scoring system (CCSS): metrics
for software security configuration vulnerabilities. NIST interagency report, p. 7502
(2010)

https://cwe.mitre.org/data/definitions/16.html
https://cwe.mitre.org/data/definitions/16.html
https://www.fairwinds.com/kubernetes-config-benchmark-report
https://doi.org/10.1007/978-3-030-49432-2_4
https://thehackernews.com/2022/10/microsoft-confirms-server.html
https://thehackernews.com/2022/10/microsoft-confirms-server.html
http://arxiv.org/abs/2006.12327
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-6538
https://nvd.nist.gov/vuln/detail/cve-2020-10749
https://nvd.nist.gov/vuln/detail/cve-2022-0811

Analyzing Security Misconfigurations of Kubernetes and Kubedges 187

22. Wang, S., Li, C., Hoffmann, H., Lu, S., Sentosa, W., Kistijantoro, A.I.: Understand-
ing and auto-adjusting performance-sensitive configurations, vol. 53, pp. 154–168.
Association for Computing Machinery, March 2018

23. Xu, T., Jin, X., Huang, P., Zhou, Y.: Early detection of configuration errors to
reduce failure damage, pp. 619–634. USENIX Association (2016)

24. Zhang, J., Piskac, R., Zhai, E., Xu, T.: Static detection of silent misconfigurations
with deep interaction analysis. Proc. ACM Program. Lang. 5, 1–30 (2021)

25. Zhang, J., et al.: Encore: exploiting system environment and correlation informa-
tion for misconfiguration detection, pp. 687–700 (2014)

Streamlining XR Application Deployment
with a Localized Docker Registry

at the Edge

Antonios Makris1(B) , Evangelos Psomakelis1 , Ioannis Korontanis1 ,
Theodoros Theodoropoulos1 , Antonis Protopsaltis2,4 , Maria Pateraki3,4 ,

Zbyszek Ledwoń5, Christos Diou1 , Dimosthenis Anagnostopoulos1 ,
and Konstantinos Tserpes1,3

1 Department of Informatics and Telematics, Harokopio University, Athens, Greece
{amakris,vpsomak,gkorod,ttheod,cdiou,tserpes}@hua.gr

2 University of Western Macedonia, Kozani, Greece
antonis.protopsaltis@oramavr.com

3 National Technical University of Athens, Athens, Greece
4 ORamaVR, Heraklion, Greece

maria@oramavr.com
5 Orbital Knight, Warsaw, Poland

zledwon@orbitalknight.com

Abstract. In recent years, containerization is becoming more and more
popular for deploying applications and services and it has significantly
contributed to the expansion of edge computing. The demand for effec-
tive and scalable container image management, however, increases as
the number of containers deployed grows. One solution is to use a local-
ized Docker registry at the edge, where the images are stored closer to
the deployment site. This approach can considerably reduce the latency
and bandwidth required to download images from a central registry. In
addition, it acts as a proactive caching mechanism by optimizing the
download delays and the network traffic. In this paper, we introduce an
edge-enabled storage framework that incorporates a localized Docker reg-
istry. This framework aims to streamline the storage and distribution of
container images, providing improved control, scalability, and optimized
capabilities for edge deployment. Two demanding XR applications are
employed as use cases to experiment with the proposed solution.

Keywords: edge · cloud · containers · storage · registry · docker ·
kubernetes

1 Introduction

Recently, the rapid emergence of XR applications, including Augmented, Vir-
tual, Mixed Reality and Holography has revolutionized the way users interact
with digital content, providing immersive and engaging experiences in diverse
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 188–202, 2023.
https://doi.org/10.1007/978-3-031-46235-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_12&domain=pdf
http://orcid.org/0000-0003-0514-4292
http://orcid.org/0000-0002-2342-3626
http://orcid.org/0009-0005-4174-537X
http://orcid.org/0000-0002-4618-4891
http://orcid.org/0000-0002-5670-1151
http://orcid.org/0000-0002-8943-4598
http://orcid.org/0000-0002-2461-1928
http://orcid.org/0000-0003-0747-4252
http://orcid.org/0000-0001-5183-1443
https://doi.org/10.1007/978-3-031-46235-1_12

Streamlining XR Application Deployment at the Edge 189

domains. However, these applications present several challenges that are pro-
foundly intertwined with the fundamental nature of their respective types. From
a network standpoint, they establish a novel category of services in which conven-
tional best-effort and simple traffic differentiation approaches prove inadequate
to satisfy their stringent demands. Even when considering the advances of 5G,
these applications pose a huge challenge to the network and the entire compu-
tation infrastructure.

One option to meet such demanding requirements is by leveraging Edge com-
puting [9]. Edge computing has gained considerable traction in both industry
and academia in recent years and it is widely recognized as a critical facilitator
for addressing the ever-increasing strict requirements of next-generation appli-
cations [10,13]. Edge computing has emerged as a promising paradigm able to
avoid network bottlenecks, overcome communication overheads, and reduce the
data transfer delay, as the computational load is moved to the edge of the net-
work, thus leveraging the computational capabilities of the edge nodes [14,15].
However, the seamless delivery of XR applications on resource-constrained edge
devices, poses unique challenges due to limited network bandwidth, latency con-
straints, and intermittent connectivity [16]. Additionally, the size of XR appli-
cation images is often significant, and downloading these images from remote
repositories can put a burden on the limited network bandwidth and introduce
significant latency.

In order to address these challenges, one approach is to leverage localized reg-
istries. A localized registry serves as a local cache on container images, enabling
edge nodes/devices to retrieve these images from nearby storage instead of fetch-
ing them over the network. By deploying a localized registry at the edge nodes,
the burden of downloading these large application images from remote repos-
itories can be alleviated. This results in faster and more efficient application
deployment as well as significantly lower latency. This is crucial for meeting the
stringent latency constraints of XR applications, ensuring smoother and more
responsive user experiences. Additionally, a localized registry provides resilience
in environments with intermittent connectivity. Edge environments often face
connectivity issues, and accessing remote repositories can be challenging. By
relying on a localized registry, uninterrupted application delivery can be ensured.

This paper presents and evaluates a hybrid distributed edge-enabled storage
framework spread across heterogeneous edge and cloud nodes with considera-
tions on performance (QoS), emphasizing on the resolution of the problem of
data distribution and offloading based on application’s requirements. A Local-
ized Docker Registry (LDR) is provided which serves as a crucial component,
addressing the need to bring application images closer to the edge while min-
imizing network traffic and image download durations. LDR is based on the
Docker registry technology with Kubernetes orchestration, a MinIO object stor-
age backend and a set of automated deployment and configuration scripts. This
integration enables LDR to deploy and scale the Docker registry automatically
while maintaining centralized control over various configuration options. Addi-
tionally, an image synchronization daemon, called Registry Sync Daemon (RSD)
waits for trigger messages that instruct it to populate the LDR with new images.

190 A. Makris et al.

Subsequently, all nodes within the corresponding edge cluster gain access to these
updated images through the LDR, enabling rapid deployment of the associated
services. By employing this configuration, we gain the ability to finely adjust
the back-end storage, strategically positioning the images in optimal physical
locations based on the specific requirements of each use case. As a result, LDR
streamlines the storage and distribution of container images, offering enhanced
control, scalability, and optimized edge deployment capabilities. The proposed
framework is examined in two XR use case scenarios, specifically Collaborative
VR medical training and Multiplayer Mobile Gaming. The evaluation reveals
a significant reduction in application deployment time, indicating the positive
impact of the proposed solution.

The rest of the paper is organized as follows. Section 2 serves as a literature
review in the field of employing local registries for storing application images in
edge computing environments. Section 3 describes in detail the system architec-
ture of the proposed framework, outlining the various components it comprises.
Section 4 introduces the XR use cases while Sect. 5 presents the experimental
evaluation of the proposed solution. Finally, Sect. 7 summarizes the merits of
our work and highlights some perspectives that require further attention in the
future.

2 Related Work

With containerization being widely adopted as the microservice approach in
cloud computing [11], a growing body of research is investigating the potential
benefits of using local registries to store Docker application images. The primary
objective is to speed up container deployment by reducing the time required for
image downloads.

Boubendir et al. [3] proposed a platform that utilizes container agents to
federate IT and network resources located at the edge outside an operator’s
infrastructure. They estimate the deployment time for slices, which includes on-
boarding each Docker onto infrastructure nodes from a Docker registry on the
operator gateway. Deployment time varies according to network performance
with deployment taking less than 16 s using a 100 Mbps Ethernet LAN but up
to 3 h for a remote registry over a 10 Mbps link. To reduce deployment time to
3 min in this scenario, the authors suggested deploying registry relays locally at
the edge.

While remote registries can result in substantial waiting and downloading
times for platforms, local registries situated on the edge can operate on hosts
with constrained resources while handling numerous image pulling and pushing
requests. To overcome prolonged times associated with downloading application
images from remote registries, some platforms adopt a hybrid approach of both
remote and local registries. Gupta et al. [7] introduced a solution that utilizes
containerization techniques for deploying and managing deep learning models,
providing benefits such as low latency, data privacy, and minimal space require-
ments. During their study, an edge server retrieved images from a centralized

Streamlining XR Application Deployment at the Edge 191

registry and stored them in a local registry. This allowed the edge server to ful-
fill future requests for the same model from the local registry, thereby reducing
download times.

To address the issue of registry scalability and reduce pull delay at the edge,
Gazzetti et al. [5] introduced a streamed deployment approach. This approach
involves the use of a singular device, known as the Gateway, which engages with
the cloud and retrieves images on behalf of nearby devices. Subsequently, these
images are disseminated among these devices in a peer-to-peer fashion, resulting
to reduced delays, minimized network usage, and enhanced scalability.

Platforms and tools can use local registries at the edge to reduce image down-
load speed, but strategic placement is necessary when dealing with many nodes.
Knob et al. [4] proposed a new deployment solution for distributing container
registries on an edge topology using a community-based placement algorithm
that optimizes registry distribution in a relation graph. The proposed solution
employs a two-phase algorithm to generate communities and designate a cen-
tral node as the host for the new registry. This approach showcases enhanced
performance, achieving over a 70 percent reduction in total instantiation time.
Furthermore, it effectively minimizes the occurrence of non-started containers,
even when employing only two registries.

Becker et al. [2] presented EdgePier, a fully decentralized container registry
for edge sites that uses peer-to-peer connections to reduce deployment times.
EdgePier facilitates the exchange of image layers without relying on central-
ized orchestration entities. Evaluations indicate that it can enhance provisioning
times by up to 65 percent compared to a standard registry, even when dealing
with limited bandwidth. This advantage became increasingly prominent as the
sizes of the images expanded.

Littely et al. [8] proposed a distributed architecture to solve the issues of high
waiting and downloading times associated with remote registries and resource
limitations of local registries. The architecture utilizes individual registry nodes,
which eliminates the need for separate storage backends, simplifies scaling, and
enables efficient caching strategies. By forming a consistent hashing ring, the
registry nodes establish a mechanism to identify each other using Zookeeper.
This enables clients to directly communicate with the registry nodes, facilitating
the retrieval of images through direct requests.

Zheng et al. [17] presented Wharf, a middleware that distributes Docker
images across a distributed file system to decrease storage usage, network load,
and job completion times in a cluster. They optimized the synchronization of
global state accesses and employed Wharf to partition Docker’s runtime state
in order to achieve faster image retrievals by up to 12 times compared to utiliz-
ing Docker on local storage. CoMICon [12] is another example that showcases
the usage of a decentralized multi-agent approach with storage-aware nodes to
improve high availability and load balancing in localized image registries. This
approach offers a range of features, such as the ability to store and delete images
in partial layers, facilitating efficient transfers of image layers between registries,
and enabling distributed image retrieval during the startup of containers.

192 A. Makris et al.

3 System Architecture

The proposed framework is based on Kubernetes (K3s)1, MinIO2 and
Prometheus3 technologies. Kubernetes is an open-source system for automat-
ing deployment, scaling, and management of containerized applications. A
lightweight Kubernetes distribution built for IoT & Edge computing is used,
called K3s. K3s is a highly available, certified Kubernetes distribution designed
for production workloads in unattended, resource-constrained, remote locations
or inside IoT appliances. As a storage solution, an open-source framework cre-
ated by IBM is utilized, called MinIO. MinIO is an inherently decentralized
and highly scalable peer-to-peer solution which is designed to be cloud native
and can run as lightweight containers managed by external orchestration ser-
vices such as Kubernetes. It supports a hierarchical structure in order to form
federations of clusters and it has been proven as a valid candidate for an edge
data storage system [1]. MinIO writes data and metadata together as objects,
eliminating the need for a metadata database. In addition, MinIO performs all
functions (erasure code, bitrot check, encryption) as inline, strictly consistent
operations. The result is that MinIO is exceptionally resilient. Moreover, it uses
object storage over block storage so it is in fact a combination of the two systems,
preserving the lightweight distributed nature of block storage while providing the
plethora of metadata and easy usage of the object storage. Unlike other object
storage solutions that are built for archival use cases only, MinIO is designed
to deliver the high-performance object storage that is required by modern big
data applications. In addition, MinIO provides both a web-based GUI and an
AWS S3 compatible API library. The Kubernetes Dataset Lifecycle Framework
(DLF) provided by IBM’s Datashim4 is employed on top of MinIO, allowing
the edge storage component to be used as a mountable virtual disk drive. A
detailed description of the DLF is provided in Sect. 3.1. In addition, Prometheus
is responsible for collecting monitoring data about the real time performance of
the nodes and the component as a whole to analyze the behaviour of different
applications and optimize the cluster architecture, the options, and the data
distribution. Finally, a localized Docker registry (LDR) is provided in order to
move application images closer to the edge and limit network traffic and image
download times. LDR hosts the Docker images and employs Kubernetes con-
tainerization in order to provide its services, creating a new pod that is able to
connect to the Minio storage backend. In addition, LDR creates a set of secrets
that allows the secure communication between the registry and its clients using
the HTTPS protocol and a basic authentication scheme. A detailed description
of the LDR is provided in Sect. 3.2. Figure 1 presents a conceptual overview of
the proposed framework, highlighting the components utilized in an illustrative
scenario featuring a K3s cluster consisting of two nodes.

1 https://k3s.io/.
2 https://min.io/.
3 https://prometheus.io/.
4 https://datashim.io/.

https://k3s.io/
https://min.io/
https://prometheus.io/
https://datashim.io/

Streamlining XR Application Deployment at the Edge 193

TCP/ 5000

Lookup

 DNS:ldr.reg

 Private key

Docker Registry Secret Service Account

Create
Secret cert-managerldr.registry

docker push
docker pull

Dataset CRD
kind: Dataset
metadata:
 name: minio-data

Dataset Lifecycle management via
Operator

Integration with multi-cloud/edge
remote datasets Workload Annotation

apiVersion: v1
kind: Pod
metadata:
 name: minio-client-sample
spec:
 volumes:
 - name: minio-storage
 persistentVolumeClaim:
 claimName: minio-data

Workload pods
Configure and pass COS credentials via

K3s secrets

Dataset Lifecycle Framework

Dataset #1 Dataset #2

Cluster

Deploy Application
Submit the application to the K3s

Cluster

Dynamic Lifecycle Framework - Data
sources

DLF transparently links pods with target data
sources by exploiting Dataset abstraction

Cloud

Edge

Fig. 1. Conceptual overview of the proposed framework

3.1 Kubernetes Dataset Lifecycle Framework

The hybrid cloud/edge environment is swiftly emerging as the favored approach
for organizations seeking the perfect mix of scalability, performance, and security.
Therefore, it has become customary for organizations to utilize a combination
of on-premises data centers (private cloud), and cloud/edge solutions from mul-
tiple providers to store and manage their data. Nevertheless, many obstacles
arise when applications have to access the data. Developers are required to have
knowledge of the precise location of data, while also managing the appropri-
ate credentials to access the designated data sources containing their data. In
addition, access to cloud/edge storage is often completely transparent from the
cloud management standpoint and it is difficult for infrastructure administra-
tors to monitor which containers have access to which cloud storage solution.
Despite the widespread promotion of containerized components and microser-
vices as the ideal solution for efficient storage deployment and management in
hybrid edge/cloud infrastructure, containerization makes it more difficult for the
workloads to access the shared file systems. Currently, there are no established

194 A. Makris et al.

resource types to represent the concept of data-source on Kubernetes. As more
and more applications are running on Kubernetes for batch processing, end users
are burdened with configuring and optimizing the data access [6].

The Dataset Lifecycle Framework (DLF), an open-source project, is utilized
to address the previously mentioned challenges by providing containerized appli-
cations with transparent and automated access to data-sources. DLF allows
users to access remote data-sources by integrating a mount point into their
containerized workloads. Its primary objective is to enhance usability, security,
and performance, offering users a higher level of abstraction for dynamic storage
provisioning in their applications. By integrating DLF on Kubernetes pipelines,
it is able to mount object stores as Persistent Volume Claims (PVCs), which are
pieces of storage in the cluster, and present them to pipelines as a POSIX-like
file system. Moreover, DLF leverages Kubernetes access control and secret man-
agement, eliminating the need for pipelines to operate with elevated privileges
or handle sensitive secret keys, thus making the platform more secure. DLF is
designed to be cloud-agnostic and due to Container Storage Interface (CSI)5, it is
highly extensible to support various data-sources. DLF introduces the Dataset as
a Custom Resource Definition (CRD)6, which is a pointer to existing S3 or NFS
data-sources. A Dataset object is a reference to a storage provided by a cloud-
based storage solution, potentially populated with pre-existing data. In other
words, each Dataset is a pointer to an existing remote data-source and is mate-
rialized as a PVC. Creating a CRD is just the first step to add custom logic in the
Kubernetes cluster. The next step is to create a component that has embedded
the domain-specific application logic for the CRD. Essentially, a service provider
is tasked with developing and installing a component that effectively responds
to the various events inherent to the lifecycle of a CRD, thereby implementing
the desired functionality. DLF utilizes the Operator-SDK, an open-source com-
ponent of the Operator Framework7, which provides the necessary tooling and
automation in the development of these components in an effective, automated,
and scalable way. Its main functionality is to respond to the creation or deletion
of a new Dataset and materialize the specific object.

3.2 Localized Docker Registry

The localized Docker registry (LDR) is creating a Docker image registry inside
each MiniCloud, taking Docker and VM images near the edge devices. A Mini-
Cloud is a set of interconnected resources that are available at the edge and can
host instances of application components. This functionality acts as a proactive
caching mechanism by optimizing the download delays and the network traffic.
The port of the LDR as well as its credentials are pre-configured using the gener-
alized configuration file that is packed with the proposed edge storage solution.

5 https://kubernetes-csi.github.io/docs/.
6 https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-

resource-definitions/.
7 https://operatorframework.io/.

https://kubernetes-csi.github.io/docs/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://operatorframework.io/

Streamlining XR Application Deployment at the Edge 195

After the successful deployment of the LDR, an image synchronization daemon,
called Registry Sync Daemon (RSD), is started in another container and waits
for triggering messages that instruct it to populate the LDR instance with new
images. Then each node in the same egde cluster gains access to these new images
through the LDR, allowing them to quickly deploy the associated services.

LDR is based on the Docker registry technology in order to store and dis-
tribute container images. It combines the official Docker registry image8 with
Kubernetes orchestration, a MinIO object storage backend and a set of auto-
mated deployment and configuration scripts. This enables LDR to automatically
deploy and scale the Docker registry as needed while centrally controlling the
configuration options such as communication protocols, SSL certificates, creden-
tials, connection ports and others. This configuration also enables us to fine-
tune the back-end storage, placing the images at the optimal physical locations
according to the needs of each use case. The VM images are handled as objects,
stored in a MinIO bucket and accessed either using the S3 API it provides, its
web interface or the DLF functionality the LDR has added on top of MinIO,
making the buckets available as mountable virtual disks.

RSD is a synchronization mechanism that can take decisions about image
pre-loading in real time. In detail, it can monitor a Kafka message broker topic
in real time, waiting for triggering messages about new or updated images. In
addition, it also exposes an API endpoint that allows manual triggering of a
pre-loading task. When a pre-loading task is initiated, RSD is trying to access
the target image, using any pre-registered credentials if needed. If it successfully
accesses the image, it starts replicating it to its host Minicloud using the deployed
LDR instance. In the scenario where the image corresponds to a container, it
will be deployed within the Docker Registry section of the LDR. Conversely,
if the image is a VM image, it will be replicated in the appropriate MinIO
bucket. In addition, RSD also provides a wide set of API endpoints that enable
users to trigger various tasks or get information about available images, provided
functionalities and status of running tasks.

4 Use Cases

The proposed framework has been deployed and evaluated in the context of two
European funded projects; CHARITY9 and ACCORDION10. These projects
offer a wide set of real life use cases that provide ample opportunity for testing
and evaluating the proposed solution. In this section we provide a brief overview
of two use cases.

4.1 Collaborative VR Medical Training

The collaborative Virtual Reality (VR) use case addresses an experiential med-
ical training simulation, via a gamified, multi-user VR platform, namely ORa-
8 https://hub.docker.com/ /registry.
9 https://www.charity-project.eu/.

10 https://www.accordion-project.eu/.

https://hub.docker.com/_/registry
https://www.charity-project.eu/
https://www.accordion-project.eu/

196 A. Makris et al.

maVR (OVR) MAGES SDK [18], that is based on the Unity game engine. As the
VR Head-mounted Displays (HMDs) are generally of limited processing power
and storage resources, this use case offloads the most demanding Unity pipeline
processes to powerful, in terms of CPU, GPU and memory, edge resources. The
remote-rendering network application, deployed on the edge, is responsible for
maintaining the game logic of the virtual scenario, synchronizing all in-game VR
user interactions in real time, performing physics computations, image render-
ing, encoding and streaming. To achieve multi-user collaboration in the same
VR session, the edge application broadcasts all VR scene transformation data to
other edge nodes, serving other users that may be situated in various geoloca-
tions, through Photon Relay server. The VR HMD application is responsible for
receiving, decoding and projecting the rendered images and for capturing and
transmitting user event data. In VR applications, optimal Quality of Experience
(QoE) must be maintained at all times, in order to ensure user immersion in the
virtual environment. To achieve such QoE, minimal latency and high bandwidth
are critical factors in this demanding distributed VR pipeline, which may be
alleviated by intelligent data handling and network transactions, through high
speed networks, for streaming. Figure 2 presents the high level architecture of
the collaborative VR use case.

Fig. 2. Collaborative VR medical training high level architecture

Streamlining XR Application Deployment at the Edge 197

The presented solution is actively aiding the deployment, migration and scal-
ing of the collaborative VR medical training application, by using pro-active data
caching near the edge node, which hosts the remote-rendering network applica-
tion. The application, which is packaged into a VM image (grey boxes in Fig. 2),
needs to be dynamically deployed in an edge server, which is a machine with high-
end CPU, GPU, and memory resources, physically located near the HMDs. This
means that to deploy the remote-rendering application, the VM image should
be fetched and executed in minimal time, while the HMD user is initiating the
VR session.

4.2 Multiplayer Mobile Gaming

The second use case is owned by Orbital Knight11, a Polish based mobile game
development company. The use case concerns the deployment of a multiplayer
mobile game that runs on Android smart devices and involves a big number of
concurrent players, up to 100, that share the same session. The primary difficulty
faced in this use case pertains to the substantial amount of ongoing, real time
data exchanges required to synchronize a large number of players. As every action
taken by players within the game must be communicated to the game server and
subsequently transmitted to each individual player’s device, the objective is to
update the game’s state and the visuals displayed on their screens. To accomplish
effective coordination and reduce network and processing delays, it is essential
to dynamically scale out the game servers in real time as additional players join
a session. This means that the new servers need to be deployed near the edge
devices as fast as possible in order to counter any overcrowded servers that are
causing delays to a game session. A high level architecture of this use case and
its scaling capabilities is presented in Fig. 3.

5 Experimental Evaluation

The experimental evaluation of LDR was conducted having the scope of the
presented use cases in mind. Nevertheless, the results gathered can be generalized
and they can be used to estimate the contributions of the LDR to other possible
use cases. The selected use cases were selected due to their distinct features
and specific requirements. In detail, the collaborative VR use case requires a
substantial VM image, approximately 25 GB in size, to be deployed near the
end users, which in this case are the HMDs. On the other hand, the multiplayer
mobile gaming use case needs multiple small files, sized less than 3 MB, to be
exchanged in real time between multiple participating nodes.

11 https://www.orbitalknight.com.

https://www.orbitalknight.com

198 A. Makris et al.

Undeploy request

Deploy request

ACCORDION Minicloud

Minicloud

Minicloud

G
am

e
S

er
ve

r s
ta

tu
s

Game Server

Game Server

PLAYERS

max capacity

new

Game Server

unused

Game Servers
statuses Game Servers

Status DB

ACCORDION
ORCHESTRATORS

Q
oE

 d
at

a

MMM

requests

Game Servers
Manager

Application Bucket

PLAYERS

Fig. 3. Multiplayer Mobile Game architecture

Throughout the pilot evaluations of the collaborative VR medical training
application, the retrieval of the 25GB-sized VM image from a remote reposi-
tory resulted in substantial network congestion, causing delays in both the image
download and other concurrent network operations. By positioning the VM image
within the LDR on the same edge node before initiating a new VR session request,
the transfer delay was minimized, since the deployment of the new VM was per-
formed from a local instead of a remote repository. In detail, the pilot evaluations
were conducted on three different locations; a) Italy, b) Greece and c) Poland.
Each location had one Minicloud that contained one windows node acting as the
Kubernetes master and 1 to 3 HMDs acting as the client nodes. Since the Mini-
clouds were constructed for the pilot evaluations RSD was configured to pre-load
the OVR images into the LDR of these Miniclouds. In the initial tests, without
the LDR pre-loading, the deployment time of the application was over 10 min and
in cases it even reached 20 min. Using the pre-loading of LDR this dropped to 1–2
min, depending on the Minicloud. This means that LDR achieved a deployment
time up to 10 times faster than raw Kubernetes deployment.

The second use case, the multiplayer mobile gaming, does not preserve any
data during its sessions so the edge storage solution has little to no contributions
to offer. Nevertheless, the LDR solution offers significant support in minimizing
both the network load and the deployment time of new game servers by strategi-
cally placing the game server Docker images near the edge nodes that will host
them, before they are actually needed. In detail, each Minicloud has one stor-
age node that is located physically close to the edge nodes that can host game
servers. By placing the Docker image at the storage node of a MiniCloud, the edge
storage solution minimizes both the network load and the image download time
for all other nodes in the same MiniCloud. This advantage is derived from the

Streamlining XR Application Deployment at the Edge 199

physical proximity of the MiniCloud nodes and the high-quality connection
between them. The evaluation performed during the pilot phase yielded impres-
sive results as presented in Fig. 4. Throughout the evaluation, data files essential
for the game engine’s functionality, each smaller than 3 MB in size, were exchanged
in real time between the remote game servers and the Minicloud clients.

Fig. 4. LDR evaluation results for small files

6 Discussion

6.1 Semi-automated Deployment and Off-Loading

In the context of the presented solution, a set of bash and yaml scripts have been
developed that handle all the configuration, installation and deployment pro-
cesses that need to be contacted before and after the MinIO workers are deployed.
These configurations include firewall rules, DNS settings, package installations
and security checks that take into account the setup environment, the architec-
ture and resources of the physical machines and the software involved. These
tasks enable the semi-automatic deployment of the proposed edge storage solu-
tion, forming complex pipelines that in most other cases are performed manually
by a system administrator. This ensures that scaling can be performed seam-
lessly on each cluster, regardless of the underlying physical machines that act
as nodes. In addition, off-loading of data can be achieved by “ordering” more
instances of the MinIO worker to be deployed on more nodes and adding them
in the same MinIO cluster in real time.

6.2 Relation to Research Questions

At present, numerous research questions pertaining to edge storage solutions are
being actively investigated. These questions include the intelligent data place-
ment in computing networks, the pro-active and intelligent caching of data, the
minimization of resource waste and the maximization of resource efficiency and
the harmonization of IoT network diversity. The current research efforts and the
devised framework comprehensively address the majority of these research ques-
tions by providing a complete edge storage solution that takes into account the

200 A. Makris et al.

present issues in IoT edge networks and the vast number of data transactions
that continuously happen between them. Pro-active and intelligent caching of
data are two questions that also trouble the academic community and the indus-
try for a very long time. This pertains to the replication or migration of data in
advance, ensuring their availability for immediate usage when the need arises.
This reduces operational waiting times as I/O and network operations, which
usually take much more time to be completed than processing does, are per-
formed before they are needed. To accomplish this objective, an edge storage
system must possess the capability to anticipate the demand for a specific data
packet with sufficient lead time to execute the necessary data operations prior
to its actual requirement. Modern approaches are using machine learning in
order to profile the applications and the users of a system, extracting patterns
of behaviour that hint at the future data operations. The presented solution
utilizes Kubernetes (K3s) as an orchestrator, which enables us to define certain
node affinity and node selection rules that aid the selection of storage work-
ers and the placement of the data inside an edge cluster. The affinity rules are
relaxed rules that are instructing Kubernetes to prefer nodes that are meeting
most of the affinity rules specified. On the other hand, selection rules are strict
and instruct Kubernetes to deploy the storage workers on nodes that fulfill all
of the selection rules. These rules can be dynamically set either by a network
administrator or by an automated mechanism such as an intelligent agent or a
machine learning model that can estimate the most efficient placement of stor-
age workers. Harmonization of IoT network diversity concerns the definition of
a uniform way of handling the various IoT devices that can be part of an edge
cluster. An IoT edge network is like a living organism. The parts that comprise
it can change at any given time either because they do not wish to be part of
the network anymore, due to hardware or software malfunction, scaling out and
in operations, or any other event that introduces or removes devices across the
device-edge-cloud continuum. K3s is compatible with most devices that run win-
dows or unix-based operating systems. This enables the administrators to create
generalized deployment scripts that handle the deployment, configuration, un-
deployment and re-deployment of the storage workers. These generalized scripts
are highly configurable and can be edited in real time by higher level scripts
and automated mechanisms adding more layers of intelligence and automation
to these deployment and configuration processes. In addition, DLF provides a
uniform way of accessing the data, using the local file system of each device,
eliminating the need of customized solutions for each new device that becomes
a member of the device-edge-cloud continuum.

7 Conclusion

Despite the immersive experiences that next-generation applications provide
across various domains, they face numerous challenges closely tied to their inher-
ent characteristics. To address these challenges, edge computing plays a vital role
as it enables meeting the demanding requirements of these applications. How-
ever, deploying XR applications on edge devices with limited resources presents

Streamlining XR Application Deployment at the Edge 201

specific obstacles, including constraints in network bandwidth, limitations in
latency, and intermittent connectivity. In this paper, we introduce a hybrid dis-
tributed edge-enabled storage framework that integrates a localized Docker reg-
istry. This registry utilizes Docker registry technology with Kubernetes orches-
tration, along with a MinIO object storage backend and automated deployment
and configuration scripts. The inclusion of LDR streamlines the process of stor-
ing and distributing container images, providing improved control, scalability,
and optimized deployment capabilities at the edge. The experimental evalua-
tion conducted using two XR use cases demonstrates a noteworthy reduction in
application deployment time, thus confirming the positive effects of the proposed
solution. As part of our future work, we aim to explore intelligent image syn-
chronization techniques that dynamically update the localized Docker registry
based on usage patterns and application demands.

Acknowledgment. The research leading to these results received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 871793 (project ACCORDION), No 101016509 (project CHARITY) and No
101057821 (RELEVIUM). The paper reflects only the authors’ views. The Commission
is not responsible for any use that may be made of the information it contains.

References

1. Baresi, L., Mendonça, D.F.: Towards a serverless platform for edge computing. In:
2019 IEEE International Conference on Fog Computing (ICFC), pp. 1–10. IEEE
(2019)

2. Becker, S., Schmidt, F., Kao, O.: Edgepier: p2p-based container image distribu-
tion in edge computing environments. In: 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC), pp. 1–8 (2021)

3. Boubendir, A., et al.: Federation of cross-domain edge resources: a brokering archi-
tecture for network slicing. In: 2018 4th IEEE Conference on Network Softwariza-
tion and Workshops (NetSoft), pp. 415–423 (2018)

4. Dias Knob, L.A., Faticanti, F., Ferreto, T., Siracusa, D.: Community-based place-
ment of registries to speed up application deployment on edge computing. In: 2021
IEEE International Conference on Cloud Engineering (IC2E), pp. 147–153 (2021)

5. Gazzetti, M., Reale, A., Katrinis, K., Corradi, A.: Scalable Linux container pro-
visioning in fog and edge computing platforms. In: Heras, D.B., Bougé, L. (eds.)
Euro-Par 2017. LNCS, vol. 10659, pp. 304–315. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75178-8 25

6. Gkoufas, Y., Yuan, D.Y.: Dataset lifecycle framework and its applications in bioin-
formatics. arXiv preprint arXiv:2103.00490 (2021)

7. Gupta, N., Anantharaj, K., Subramani, K.: Containerized architecture for edge
computing in smart home: a consistent architecture for model deployment. In: 2020
International Conference on Computer Communication and Informatics (ICCCI),
pp. 1–8 (2020)

8. Littley, M., et al.: Bolt: towards a scalable docker registry via hyperconvergence.
In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp.
358–366 (2019)

https://doi.org/10.1007/978-3-319-75178-8_25
https://doi.org/10.1007/978-3-319-75178-8_25
http://arxiv.org/abs/2103.00490

202 A. Makris et al.

9. Makris, A., et al.: Cloud for holography and augmented reality. In: 2021 IEEE 10th
International Conference on Cloud Networking (CloudNet), pp. 118–126. IEEE
(2021)

10. Makris, A., Psomakelis, E., Theodoropoulos, T., Tserpes, K.: Towards a distributed
storage framework for edge computing infrastructures. In: Proceedings of the 2nd
Workshop on Flexible Resource and Application Management on the Edge, pp.
9–14 (2022)

11. Makris, A., Tserpes, K., Varvarigou, T.: Transition from monolithic to
microservice-based applications. Challenges from the developer perspective. Open
Res. Eur. 2, 24 (2022)

12. Nathan, S., Ghosh, R., Mukherjee, T., Narayanan, K.: Comicon: a co-operative
management system for docker container images. In: 2017 IEEE International Con-
ference on Cloud Engineering (IC2E), pp. 116–126 (2017)

13. Sabella, D., et al.: Edge computing: from standard to actual infrastructure deploy-
ment and software development. ETSI White paper, pp. 1–41 (2019)

14. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

15. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

16. Theodoropoulos, T., et al.: Cloud-based XR services: a survey on relevant chal-
lenges and enabling technologies. J. Netw. Netw. Appl. 2(1), 1–22 (2022)

17. Zheng, C., et al.: Wharf: Sharing docker images in a distributed file system. In:
Proceedings of the ACM Symposium on Cloud Computing, pp. 174–185. SoCC
’18, Association for Computing Machinery, New York, NY, USA (2018)

18. Zikas, P., et al.: Mages 4.0: accelerating the world’s transition to medical VR
training. arXiv preprint arXiv:2209.08819 (2022)

http://arxiv.org/abs/2209.08819

PhD Symposium

Towards Cloud Storage Tier Optimization
with Rule-Based Classification

Akif Quddus Khan1(B), Nikolay Nikolov2, Mihhail Matskin3, Radu Prodan4,
Christoph Bussler5, Dumitru Roman2,6, and Ahmet Soylu6

1 Norwegian University of Science and Technology – NTNU, Gjøvik, Norway
akif.q.khan@ntnu.no

2 SINTEF AS, Oslo, Norway
3 KTH Royal Institute of Technology, Stockholm, Sweden

4 University of Klagenfurt, Klagefurt, Austria
5 Robert Bosch LLC, Sunnyvale, CA, USA

6 OsloMet – Oslo Metropolitan University, Oslo, Norway

Abstract. Cloud storage adoption has increased over the years as more
and more data has been produced with particularly high demand for
fast processing and low latency. To meet the users’ demands and to pro-
vide a cost-effective solution, cloud service providers (CSPs) have offered
tiered storage; however, keeping the data in one tier is not a cost-effective
approach. Hence, several two-tiered approaches have been developed to
classify storage objects into the most suitable tier. In this respect, this
paper explores a rule-based classification approach to optimize cloud
storage cost by migrating data between different storage tiers. Instead
of two, four distinct storage tiers are considered, including premium,
hot, cold, and archive. The viability and potential of the approach are
demonstrated by comparing cost savings achieved when data was moved
between tiers versus when it remained static. The results indicate that
the proposed approach has the potential to significantly reduce cloud
storage cost, thereby providing valuable insights for organizations seek-
ing to optimize their cloud storage strategies. Finally, the limitations of
the proposed approach are discussed along with the potential directions
for future work, particularly the use of game theory to incorporate a feed-
back loop to extend and improve the proposed approach accordingly.

Keywords: Storage tiers · cloud · optimization · StaaS · cloud storage

1 Introduction

Cloud computing, in general, and cloud storage, in particular, have experienced
exponential growth in recent years [15,20,21]. Organizations have increasingly
embraced cloud services to meet their computing needs. According to Gart-
ner, 85% of enterprises are expected to adopt a cloud-first approach by 2025
[19]. The use of cloud storage, i.e., Storage-as-a-Service (StaaS) [11], instead of
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 205–216, 2023.
https://doi.org/10.1007/978-3-031-46235-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_13

206 A. Q. Khan et al.

local storage, has the potential to provide more flexibility in terms of scalabil-
ity, fault tolerance, and availability. Cloud storage systems (e.g., Amazon S3,
Azure Blob Storage, Google Cloud Storage) offer very large storage with high
fault tolerance, addressing several big data-related storage concerns [24]. When
it comes to object storage services, leading cloud service providers (CSPs) such
as Microsoft Azure, Google Cloud, and Amazon S3, offer four different storage
tier options and pricing policies tailored to their specific data storage and access
requirements. This presents an opportunity for users to optimize their StaaS
cost. For example, Google Cloud Storage provides not only hot and cold stor-
age tiers but also premium and archive tiers. The pricing structure varies across
these tiers, with the hot tier offering lower access prices but higher storage cost,
while the cold tier offers higher access prices but lower storage costs. This means
that for data objects with infrequent access, storing them in the cold tier can
result in lower expenses compared to the hot tier. As a result, StaaS users can
strategically migrate their data, i.e., can do storage tier optimization from the
hot tier to the cold tier when access demands decrease, reducing the overall cost.

Storage tier optimization is the process of organizing data into different tiers
based on its usage and performance requirements [2]. This can help improve
storage performance and efficiency by ensuring that the most frequently accessed
data is stored on the fastest media, while less frequently accessed data can be
stored on slower, less expensive media. There are many different ways to imple-
ment storage tiering. One common method is to use a storage array that has
multiple tiers of storage media, such as high-performance flash storage, mid-
range spinning disk drives, and low-cost nearline or offline storage. The storage
array can then automatically move data between tiers based on its usage pat-
terns [1]. Another common method of storage tiering is to use a software-defined
storage solution [8]. These solutions typically provide a more flexible and scal-
able approach to storage tiering than traditional storage arrays. Software-defined
storage solutions can also be used to tier data across multiple physical storage
locations, such as on-premise and cloud storage.

In this paper, we focus on moving data between different tiers at a single
location. Storage tier optimization can be a complex process, but it can offer
significant benefits in terms of performance, efficiency, and cost savings. By plan-
ning and implementing a storage tiering strategy, organizations can improve the
performance of their storage infrastructure and reduce their storage costs. To
this end, in this paper, we explore storage tier optimization for cost-effective
data storage using a rule-based classification approach that takes into account
four storage tiers instead of just two, is lightweight, does not require intense
computing resources, is platform-independent, and is fast. We propose a set of
rules for calculating a score or priority score and define a threshold to classify
each object stored in cloud storage into premium, hot, cold, or archive tiers.
We demonstrate the viability and potential of the proposed approach against
a synthetic dataset of 1TB by getting a significant reduction in storage cost.
We discuss the limitations of the proposed approach and provide directions for
improvement, particularly through expanding the proposal with the use of game

Towards Cloud Storage Tier Optimization with Rule-Based Classification 207

theory, to incorporate a feedback loop in the process of storage object classifica-
tion.

The rest of the paper is structured as follows. Section 2 provides an overview
of cloud storage cost elements, while Sect. 3 presents the rule-based classification
approach. Section 4 discusses the results and limitations and proposes the use
of game theory for storage object classification. Section 5 provides a summary
and discussion of related works. Finally, Sect. 6 concludes the paper and presents
future work.

2 Cloud Storage Cost

The five major elements of cloud storage cost include: 1) data storage; 2) network
usage; 3) transaction; 4) data retrieval; and 5) data replication/migration [5].
Table 1 shows the actual prices of different cost elements of cloud storage by
using Google Cloud1,2 as an example.

Table 1. Cost of data storage by Google Cloud in a single region, Europe - Warsaw
(europe-central2) - data collected on 12 May 2023.

Cost Element Premium Hot Cold Archive

Official term Standard Nearline Coldline Archive

Storage cost ($ n GBn month) 0.023 0.013 0.006 0.0025

GET Request ($ per 1,000) 0.0004 0.001 0.01 0.05

PUT Request ($ per 1,000) 0.005 0.01 0.02 0.05

Data Retrieval ($n GB) 0 0.01 0.02 0.05

Network Usage ($n GB) 0 0.01 0.02 0.05

Minimum Duration(days) None 30 90 365

Latency Lowa

Durability 99.999999999%b

Availability Multi-region: >99.99% Dual-regions: >99.99%Regions: 99.99% 99.95% 99.95% 99.9% 99.95% 99.95%99.9% 99.95% 99.95%99.9%

aTime to first byte typically tens of milliseconds.
bhttps://cloud.google.com/blog/products/storage-data-transfer/understanding-
cloud-storage-11-9s-durability-target

2.1 Storage Cost

Storage cost refers to the cost of storing data in the cloud. It is charged on a
per-GB-per-month basis. Each storage tier has different pricing. It also depends
on the amount of data being stored. Some CSPs offer block-rate pricing, i.e., the
larger the amount of data, the lower the unit costs are [14]. For example, there
is a certain cost for data between 0 and 50 TB, and then for some tiers, it might
be cheaper for over 50 TB of data. However, in this paper, we do not take that
into account when calculating cost estimates.

1 https://cloud.google.com/storage/pricing.
2 https://cloud.google.com/storage/docs/storage-classes.

https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target
https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target
https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/docs/storage-classes

208 A. Q. Khan et al.

2.2 Network Usage Cost

The quantity of data read from or sent between the buckets is known as network
consumption or network usage. Data transmitted by cloud storage through egress
is reflected in the HTTP response headers. Hence, the term network usage cost is
defined as the cost of bandwidth out of the cloud storage server. It is charged on
a per-GB basis. In addition to that, network cost also vary based on the amount
of data transferred, as it offers different slabs for different amounts of data. The
higher the amount of data transferred, the cheaper the cost will be.

2.3 Transaction Cost

Transaction cost refers to the costs for managing, monitoring, and controlling a
transaction when reading or writing data to cloud storage [16]. When it comes
to data storage, cloud storage providers charge for the amount of data trans-
ferred over the network and the number of operations it takes. Transaction costs
deal with the number of operations. These costs are associated with managing,
monitoring, and controlling a transaction when reading or writing data to cloud
storage.

2.4 Data Retrieval

Data retrieval fees refer to the charges incurred when retrieving or accessing
data from a storage system or service. In various cloud storage or object storage
platforms, data retrieval fees may apply when retrieving stored files or infor-
mation. These fees are typically associated with the data transfer or bandwidth
used during the retrieval process. Data access frequency in this context is of
importance when considering the impact of data retrieval on cost.

2.5 Migration Cost

Different CSPs provide the capability to migrate data objects between tiers
throughout their lifecycles, presenting a valuable opportunity for cost optimiza-
tion. The migration process involves retrieving the complete object from the
source tier and subsequently submitting a PUT request to the destination tier
to inform it of the impending object. As such, the data migration operation is
subject to expenses associated with data retrieval, calculated based on the object
size in the source tier, as well as expenses associated with the PUT request in
the destination tier.

3 Rule-Based Classification

The term rule-based classification can be used to refer to any classification
scheme that makes use of IF-THEN rules for class prediction [23]. In this method,
we define rules that assign each object to a storage tier based on specific cri-
teria, such as the frequency of access, the size of the data, and the age of the

Towards Cloud Storage Tier Optimization with Rule-Based Classification 209

stored object. For example, we define a rule that assigns objects that are accessed
frequently to a high-performance storage tier and those that are accessed less
frequently to a lower-performance storage tier. The following are some general
rules that are used to determine which characteristics are appropriate for each
tier:

1. Premium tier: This tier should be used for data with the highest frequency
of access, such as data that is accessed continuously or near-continuously
and requires the highest levels of performance and durability. For example,
mission-critical databases or high-performance computing workloads.

2. Hot tier: This tier should be used for data with frequent access patterns,
such as data that is accessed daily or weekly and requires fast access times. For
example, this might include frequently accessed files, frequently used appli-
cation data, or logs that require analysis on a regular basis.

3. Cold tier: This tier should be used for data with infrequent or irregular access
patterns, such as data that is accessed monthly, quarterly, etc. For example,
backups, archives, or historical data that is rarely accessed but needs to be
kept for long periods of time for compliance or other reasons.

4. Archive tier: The archive tier is designed for data that is rarely accessed and
has minimal retrieval requirements. It is typically used for long-term storage
and compliance purposes. This tier is suitable for data with very infrequent
access patterns, such as annually or even less frequently.

3.1 Solution Approach

We first define the weights (W) for each factor (size (Z), access frequency (F),
and age (A)) as Wz, Wf , and Wa, respectively. Then the data is defined as a
list of dictionaries, where each dictionary represents an object and contains its
size, access frequency, and age. Afterwards, the priority score for each object
is calculated using the defined weightings using Eq. 1 for size score (α), Eq. 2
for access frequency score (β), Eq. 3 for age score (γ) and Eq. 4 for calculating
priority score (λ). The weight (W) of data indicates its priority or significance,
allowing for varied importance levels across data objects, often determined by
business criteria; for instance, vital data could bear a greater weight, direct-
ing it to higher-tier storage. Data size, access frequency, and age serve as pivotal
determinants in storage choices, where larger values may entail increased storage
costs. Applying the logarithm of these values, such as log10(X), facilitates data
normalization and mitigates the potential dominance of extreme values in clas-
sification. This logarithmic transformation ensures a balanced scale for storage
tiers, effectively accommodating a wide range of data sizes.

α = Wz × log10(Z) (1)

β = Wf × log10(F) (2)

210 A. Q. Khan et al.

γ = Wa × A

365
(3)

λ = α + β + γ (4)

In this context,

– Z represents the size of data in Gigabytes (GB);
– F denotes the total number of R/W operations for an object in a specified

period of time; and,
– A represents the age of the data in months.

Finally, the objects are divided into groups based on the available storage
tiers by iterating over each object and checking if its priority score is greater than
or equal to the threshold for each tier. If so, it is added to the corresponding
group. Regarding the access frequency, the followings are the nineteen possible
windows: hourly, every 2 h, every 3 h, every 4 h, every 6 h, every 8 h, every 12 h,
daily, every other day, every 3 days, every 4 days, every week, every 2 weeks,
every month, every 2 months, every 3 months, every 4 months, every 6 months,
and yearly.

Priority Score Threshold. We set the following priority scores to classify
each object into premium, hot, cold, or archive tiers.

– Premium: 1.0
– Hot: 0.7
– Cold: 0.4
– Archive: 0.1

The selection of priority score thresholds for each storage tier aims to balance
the trade-offs between data size, access frequency, and age. The premium tier,
with a threshold of 1.0, represents the highest priority for critical and frequently
accessed data. This tier ensures fast and reliable access to the most valuable
information. The hot tier, set at 0.7, accommodates data with slightly lower
priority but still significant access requirements. It provides a balance between
performance and cost for frequently accessed data. The cold tier, with a thresh-
old of 0.4, caters to less frequently accessed data, offering cost-effective storage
without compromising data availability. Lastly, the archive tier, at 0.1, serves
as a long-term storage solution for rarely accessed data, providing cost opti-
mization while preserving data retention. These thresholds enable the effective
allocation of data to the appropriate storage tiers based on their priority scores,
ensuring optimal cost management, while meeting the needs of data access and
availability.

Towards Cloud Storage Tier Optimization with Rule-Based Classification 211

3.2 Evaluation

To evaluate the viability and potential of the proposed approach, a software tool
has been developed to provide cost estimations based on the values obtained
from Google Cloud storage when data is migrated according to the classification
performed by the proposed approach.

Dataset Information. Due to limitations in acquiring a real dataset, synthetic
data was generated based on publicly available data on Kaggle. It is an access
log of a software application deployed on the cloud for a period of almost 2.5
years. Figure 1 shows the access pattern based on the average number of accesses
of all objects over the whole storage time period. Additionally, some of the key
features of the dataset are as follows:

– Total time of data storage: A = 871 days.
– Total number of objects Tobj = 14321
– Total number of GET Requests: g(t) = 2906097
– Total number of PUT Requests: p(t) = 14321
– Object size range: 50 MB to 100 MB
– Total data size Z = 1052.45 GB

Fig. 1. Data access pattern over the whole time period. Number of accesses on the
y-axis and date on the x-axis.

Figure 2 compares the data storage cost if it remained static in one storage
tier. The calculation is done keeping in view that the access pattern that objects
will follow for the next 871 days will be similar to the first 871 days.

Weights. If 30% weight is set for size, 20% for access frequency, and 50% for the
age of the data, the combination of weights would be (0.3, 0.2, 0.5). Generally,
the sum of the total weights should be equal to 1. In that case, there are a total
of 36 possible combinations of weights. By removing the condition of the sum
being equal to 1, we created a total of 286 combinations. Then the priority score
was calculated for each combination of weights, and subsequently, the cost was
calculated. Out of 286, the cost calculation script returned 169 unique values for
the cost. The comparison of cost with those combinations is shown in Fig. 3.

212 A. Q. Khan et al.

Fig. 2. Comparison of the cost of data storage for the first 871 days with each object
having variable age vs. the cost of data storage if it is not moved between tiers for the
next 871 days.

Fig. 3. Cost comparison between different combinations of weights for size, age, and
access frequency. Cost in US Dollars is specified on the y-axis, whereas the combination
number (#) is shown on the x-axis.

Results. Due to a high number of data access requests and free data retrieval
for the premium tier, the cost of the data stored in the premium tier is the cheap-
est, as shown in Fig. 2. Although when calculating the cost of data storage for
the next 871 days, the premium tier shows the highest difference in the cost and
is still cheaper than the rest of the tiers because of the low cost of data retrieval
in the premium tier. Different costs are calculated using the proposed rule-based
classification, and a comparison is presented in Fig. 4. The effectiveness of the
weights can vary according to the characteristics of the dataset, hence, for this
dataset, the best suitable combination turned out to be size: 20%, access fre-
quency: 80%, and age: 0%. It can be seen that with the proposed rule-based
classification technique, the cost of data storage is $473.39. In contrast, if the
data is stored in the premium tier for the whole time, the total cost is $694.35
(the cost of data migration is not included in this calculation).

Towards Cloud Storage Tier Optimization with Rule-Based Classification 213

Fig. 4. Cost comparison between rule-based classification and single tiers.

4 Discussion

The proposed rule-based classification approach is lightweight, industry- and
platform-independent, and has shown promising results. According to the eval-
uation, the cost reduction is nearly 32%; even when factoring in the cost of data
migration, the difference would be significant. However, it lacks the ability to
consider feedback regarding each classification. There is a chance that the clas-
sification of a storage object may not be cost-effective, and to enhance the algo-
rithm’s performance, it is crucial to incorporate that information as feedback.
To tackle this challenge, we suggest utilizing game theory for the classification
of storage objects into different tiers.

Game theory is a mathematical framework used to analyze the interactions
and decision-making strategies of individuals or agents within a group or system
[13]. We propose the use of game theory to optimize the storage tier selection
in a multi-agent system, where each agent is responsible for storing and retriev-
ing data. One approach is to use a variant of the multi-armed bandit problem,
where the agents are the arms, and the storage tiers are the bandits. One possible
implementation of this approach could use the Thompson Sampling algorithm
[22], which is a Bayesian approach to the multi-armed bandit problem. In this
algorithm, each agent maintains a beta distribution over the storage tiers, where
the parameters of the distribution represent the number of successes and fail-
ures in selecting a storage tier. The agent selects a storage tier based on the
highest sampled value from the distribution. The update of the distribution is
done after the storage operation is completed, based on the feedback from the
system. Specifically, if the storage cost is lower than the expected cost from
the distribution, the parameters of the beta distribution are updated to reflect
success.

5 Related Work

Existing related work primarily focuses on two tiers: hot and cold. Hot data is
frequently accessed and requires high-performance storage. Cold data is accessed
infrequently and can be stored on lower-cost storage.

214 A. Q. Khan et al.

Liu et al. [7] proposed RLTiering, an auto-tiering system that uses deep
reinforcement learning to place data in the most cost-effective tier in cloud stor-
age. They also proposed a randomized online migration algorithm [6] for cost
optimization. Similarly, Erradi et al. [4] proposed two online cost optimization
algorithms for tiered cloud storage services. They are designed to minimize the
overall cost of storage, while meeting the Quality of Service (QoS) requirements
of users. The first algorithm is a greedy algorithm that places data in the cheap-
est tier that meets the QoS requirements of users. The second algorithm is a
reinforcement learning algorithm that learns to place data in the most cost-
effective tier over time. Alshawabkeh et al. [3] developed an automated and
adaptive framework using efficient Markov chain correlation-based clustering to
move active data to high-performance storage tiers and inactive data to low-
cost/high-capacity storage tiers. This framework can predict workload changes
and group similar storage units, enhancing performance, reliability, and avail-
ability and reducing cost. On the contrary, we propose an approach to storage
tiering that considers four storage tiers: premium, hot, cold, and archive.

Mansouri and Erradi [9], as well as Erradi and Mansouri [4], introduced a
series of deterministic online algorithms to address cost reduction in this partic-
ular problem. However, the aspect of access frequency, specifically the number of
access requests, was not taken into account during their decision-making process.
Our approach, however, takes into account three main factors when determining
which tier to store an object size, age, and access frequency. Moreover, Zhang
et al. [25] investigated how cloud providers can maximize their profits by using
hot and cold storage tiers, but our research focuses on how cloud users can min-
imize their costs by using hot and cold storage tiers. The multi-cloud setting is
also introduced by some scientific studies that consider migrating data among
multiple clouds for achieving cost-effective geo-distributed workloads [10,17,18].
In [12], Facebook developed a storage tier optimization approach and targeted
two storage tiers. In addition to that, their proposed approach made decisions
based on the characteristics of the whole bucket. Our algorithm makes decisions
on objects rather than buckets, hence proposing a more flexible approach. In
addition to that, it is generic, platform- and industry-independent.

6 Conclusion and Future Work

Maintaining data in a single tier continuously is ineffective and expensive. We
explored a rule-based approach that examines object metadata and access pat-
terns for storage tier optimization. The rule-based classification was demon-
strated to be successful on a synthetic data set and is straightforward and simple
to use using λ = α+β+γ for priority score calculations. We also proposed using
game theory, which is more complex, to improve the accuracy of the proposed
approach. The suggested approach is not platform- or industry-specific and is
also not very resource-intensive in terms of computation. It can, therefore, be
considered appropriate for a variety of applications. The findings indicate that
while developing such an algorithm, it is crucial to take into account the access

Towards Cloud Storage Tier Optimization with Rule-Based Classification 215

patterns and metadata of storage items. Additionally, it was demonstrated that
by utilizing the suggested approach, storage cost can be decreased.

In the future we aim to extend the proposed approach using game theory to
improve the accuracy of our predictions. By using game theory, we can model
the interactions between different entities in our system and develop an algo-
rithm that can anticipate their behaviour and make more accurate predictions.
In addition, to make the estimations and comparisons more accurate and con-
cise, there is a need for comprehensive mathematical modelling that not only
correctly calculates the costs, but also takes into account the followings: 1) net-
work usage cost based on block pricing; 2) data migration costs; and 3) penalty
fees if an object is removed before the minimum time period specified for that
particular tier. These should be used to generate accurate and concise estimates
and comparisons of the cost for different storage options.

Acknowledgments. The first author is a Ph.D. Candidate. This work received par-
tial funding from the projects DataCloud (H2020 101016835), enRichMyData (HE
101070284), Graph-Massivizer (HE 101093202), UPCAST (HE 101093216), and Big-
DataMine (NFR 309691).

References

1. What is a storage device hierarchy? (2021). https://www.ibm.com/docs/en/zos/
2.2.0?topic=dfsmshsm-what-is-storage-device-hierarchy. Accessed 20 Oct 2023

2. Tier definitions and volume placement optimization (2022). https://www.ibm.
com/docs/en/storage-insights?topic=SSQRB8/com.ibm.spectrum.si.doc/tpch
saas r volume optimization process.htm. Accessed 20 May 2023

3. Alshawabkeh, M., Riska, A., Sahin, A., Awwad, M.: Automated storage tiering
using markov chain correlation based clustering. In: Proceedings of the 11th Inter-
national Conference on Machine Learning and Applications (ICMLA 2012), vol. 1,
pp. 392–397. IEEE (2012). https://doi.org/10.1109/ICMLA.2012.71

4. Erradi, A., Mansouri, Y.: Online cost optimization algorithms for tiered cloud
storage services. J. Syst. Softw. 160, 110457 (2020). https://doi.org/10.1016/j.jss.
2019.110457

5. Khan, A.Q., et al.: A taxonomy for cloud storage cost. In: Proceedings of the 15th
International Conference on Management of Digital Ecosystems. Springer, Cham
(2023)

6. Liu, M., Pan, L., Liu, S.: Keep hot or go cold: a randomized online migration
algorithm for cost optimization in StaaS clouds. IEEE Trans. Netw. Serv. Manage.
18(4), 4563–4575 (2021). https://doi.org/10.1109/TNSM.2021.3096533

7. Liu, M., Pan, L., Liu, S.: RLTiering: a cost-driven auto-tiering system for two-
tier cloud storage using deep reinforcement learning. IEEE Trans. Parallel Distrib.
Syst. 34(2), 73–90 (2022). https://doi.org/10.1109/TPDS.2022.3224865

8. Macedo, R., Paulo, J.A., Pereira, J., Bessani, A.: A survey and classification of
software-defined storage systems. ACM Comput. Surv. 53(3), 1–38 (2020). https://
doi.org/10.1145/3385896

9. Mansouri, Y., Erradi, A.: Cost optimization algorithms for hot and cool tiers cloud
storage services. In: Proceedings of the 11th International Conference on Cloud
Computing (CLOUD 2018), pp. 622–629. IEEE (2018). https://doi.org/10.1109/
CLOUD.2018.00086

https://www.ibm.com/docs/en/zos/2.2.0?topic=dfsmshsm-what-is-storage-device-hierarchy
https://www.ibm.com/docs/en/zos/2.2.0?topic=dfsmshsm-what-is-storage-device-hierarchy
https://www.ibm.com/docs/en/storage-insights?topic=SSQRB8/com.ibm.spectrum.si.doc/tpch_saas_r_volume_optimization_process.htm
https://www.ibm.com/docs/en/storage-insights?topic=SSQRB8/com.ibm.spectrum.si.doc/tpch_saas_r_volume_optimization_process.htm
https://www.ibm.com/docs/en/storage-insights?topic=SSQRB8/com.ibm.spectrum.si.doc/tpch_saas_r_volume_optimization_process.htm
https://doi.org/10.1109/ICMLA.2012.71
https://doi.org/10.1016/j.jss.2019.110457
https://doi.org/10.1016/j.jss.2019.110457
https://doi.org/10.1109/TNSM.2021.3096533
https://doi.org/10.1109/TPDS.2022.3224865
https://doi.org/10.1145/3385896
https://doi.org/10.1145/3385896
https://doi.org/10.1109/CLOUD.2018.00086
https://doi.org/10.1109/CLOUD.2018.00086

216 A. Q. Khan et al.

10. Mansouri, Y., Toosi, A.N., Buyya, R.: Cost optimization for dynamic replication
and migration of data in cloud data centers. IEEE Trans. Cloud Comput. 7(3),
705–718 (2017). https://doi.org/10.1109/TCC.2017.2659728

11. Mansouri, Y., Toosi, A.N., Buyya, R.: Data storage management in cloud environ-
ments: taxonomy, survey, and future directions. ACM Comput. Surv. 50(6), 1–51
(2017). https://doi.org/10.1145/3136623

12. Muralidhar, S., et al.: F4: Facebook’s warm BLOB storage system. In: Proceedings
of the 11th USENIX Symposium on Operating Systems Design and Implementa-
tion, pp. 383–398. USENIX Association (2014)

13. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cam-
bridge (1997)

14. Naldi, M., Mastroeni, L.: Cloud storage pricing: a comparison of current prac-
tices. In: Proceedings of the International Workshop on Hot Topics in Cloud
Services (HotTopiCS 2013), pp. 27–34. ACM (2013). https://doi.org/10.1145/
2462307.2462315

15. Nikolov, N., et al.: Conceptualization and scalable execution of big data work-
flows using domain-specific languages and software containers. Internet Things 16,
100440 (2021). https://doi.org/10.1016/j.iot.2021.100440

16. Nuseibeh, H.: Adoption of cloud computing in organizations. In: Proceedings of
the Americas Conference on Information Systems (AMCIS 2011). AISeL (2011)

17. Oh, K., Chandra, A., Weissman, J.: Wiera: towards flexible multi-tiered geo-
distributed cloud storage instances. In: Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
2016), pp. 165–176. ACM (2016). https://doi.org/10.1145/2907294.2907322

18. Qiu, X., Li, H., Wu, C., Li, Z., Lau, F.C.: Cost-minimizing dynamic migration
of content distribution services into hybrid clouds. IEEE Trans. Parallel Distrib.
Syst. 26(12), 3330–3345 (2014). https://doi.org/10.1109/INFCOM.2012.6195655

19. Robinson, K.: Why companies are flocking to the cloud more than
ever (2021). https://www.businessinsider.com/cloud-technology-trend-software-
enterprise-2021-2. Accessed 20 Feb 2023

20. Roman, D., et al.: Big data pipelines on the computing continuum: tapping the dark
data. Computer 55(11), 74–84 (2022). https://doi.org/10.1109/MC.2022.3154148

21. Rydning, D.R.J.G.J., Reinsel, J., Gantz, J.: The digitization of the world from edge
to core. Technical report, Framingham: International Data Corporation (2018)

22. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25(3–4), 285–294 (1933)

23. Tung, A.K.H.: Rule-based classification. In: Liu, L., Özsu, M.T. (eds.) Encyclo-
pedia of Database Systems, pp. 2459–2462. Springer, Boston (2009). https://doi.
org/10.1007/978-0-387-39940-9 559

24. Yang, C., Xu, Y., Nebert, D.: Redefining the possibility of digital Earth and geo-
sciences with spatial cloud computing. Int. J. Digit. Earth 6(4), 297–312 (2013).
https://doi.org/10.1080/17538947.2013.769783

25. Zhang, Y., Ghosh, A., Aggarwal, V., Lan, T.: Tiered cloud storage via two-stage,
latency-aware bidding. IEEE Trans. Netw. Serv. Manage. 16(1), 176–191 (2018).
https://doi.org/10.1109/TNSM.2018.2875475

https://doi.org/10.1109/TCC.2017.2659728
https://doi.org/10.1145/3136623
https://doi.org/10.1145/2462307.2462315
https://doi.org/10.1145/2462307.2462315
https://doi.org/10.1016/j.iot.2021.100440
https://doi.org/10.1145/2907294.2907322
https://doi.org/10.1109/INFCOM.2012.6195655
https://www.businessinsider.com/cloud-technology-trend-software-enterprise-2021-2
https://www.businessinsider.com/cloud-technology-trend-software-enterprise-2021-2
https://doi.org/10.1109/MC.2022.3154148
https://doi.org/10.1007/978-0-387-39940-9_559
https://doi.org/10.1007/978-0-387-39940-9_559
https://doi.org/10.1080/17538947.2013.769783
https://doi.org/10.1109/TNSM.2018.2875475

Industry Projects Track

Towards a Decentralised Federated
Learning Based Compute Continuum

Framework

Mohamad Moussa1,2(B), Philippe Glass2, Nabil Abdennahder1, Giovanna
Di Marzo Serugendo2, and Raphaël Couturier3

1 HEPIA, University of Applied Sciences and Arts, Western Switzerland,
4 Rue de la Prairie, 1202 Geneva, Switzerland

{mohamad.moussa,nabil.abdennadher}@hesge.ch
2 Computer Science Center, University of Geneva, Geneva, Switzerland

{philippe.glass,giovanna.dimarzo}@unige.ch
3 Université de Franche-Comté, CNRS, institut FEMTO-ST, 90000 Belfort, France

raphael.couturier@univ-fcomte.fr

Abstract. The proliferation of sensing device technologies, and the
growing demand for data intensive IoT applications calls for a seam-
less interconnection of IoT, edge and cloud resources in one computing
system, to form a Compute Continuum, also referred to as edge-to-cloud.

This paper targets self-adaptive Machine Learning applications that
rely on data coming from IoT sensors. These applications are often
“context-aware”, with high context sensitivity, different physical settings
and complex usage patterns. Their intelligence, deployed on the edge, is
updated on the fly.

We present two Compute Continuum strategies for the deployment
of such applications: (1) a centralised approach, which involves training
a model on a centralised server, and (2) a decentralised approach using
Federated Learning. The former approach involves centralising data from
multiple sources onto a single server, while the latter locally decentralises
both the training process and the aggregation and communication tasks
across edge devices. In both cases the inference model is deployed on
edge devices close to the collected data. The decentralised architecture
relies on a coordination platform favouring self-adaptation and decen-
tralised Federated Learning. Results show that the decentralised Fed-
erated Learning approach offers networking performances and privacy-
preserving advantages compared to non-private centralised models, with
a slight trade-off in prediction accuracy. According to our simulations,
the deployment cost of the decentralised architecture is much lower than
that of deployment on the centralised architecture.

Keywords: Compute Continuum · Edge · Cloud · Federated
Learning · Self-Adaptive IoT applications · Coordination model

1 Introduction

The unstoppable proliferation of sensing device technologies, and the growing
demand for data-intensive applications in the edge and cloud, are driving the
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 219–230, 2023.
https://doi.org/10.1007/978-3-031-46235-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_14

220 M. Moussa et al.

next generation of computing systems architectures. In these architectures, “Ser-
vices” that were initially deployed on the Cloud will migrate to the edge. The
resulting paradigm involves combining IoT, edge and cloud resources in one
computing system, to form a Compute Continuum (CC).

We define here CC as a current trend of developing, deploying, and run-
ning highly distributed, Machine Learning (ML) based self-adaptive, computing
intense and data-sensitive IoT applications on a set of IT resources ranging from
high density compute and storage to very lightweight embedded computers run-
ning on batteries or solar power.

To deploy such ML-based applications, there is a growing shift from a cen-
tralised IoT-Cloud architecture to a hierarchical IoT-Edge-Cloud architecture
where the learning algorithms are executed in the cloud while the inference
models (generated by the learning algorithms) are executed on the edge. Sev-
eral research projects and industrial products are addressing hierarchical IoT-
edge-cloud solutions where IoT sensors (resp. edge devices) are controlled and
managed by the edge devices (resp. the cloud). In this context, the intelligence
deployed on the edge devices is improved by the cloud, as detailed in Sect. 2.
Nevertheless, the IoT-Edge-Cloud architecture cannot cope with decentralised
applications where the learning cannot be centralised in the cloud. In fact, in
many cases, the learning needs to be collaborative among edges. To the best of
our knowledge, there is no tool that fulfils the two following characteristics:

– ability to provide end-to-end transaction resiliency of applications broken
down in a set of micro-services deployed on IoT sensors, edge devices, Cloud
and HPC infrastructures.

– ability to secure and timely handle the increasing and latency flow (east-west
or peer-to-peer) of sensitive data and applications.

This paper proposes and compares two CC architectures, a centralised and
a decentralised one. In the remainder of this article, we will refer to Edge-to-
Edge (E2E), for the decentralised architecture; and Edge-To-Cloud (E2C) for
the centralised solution.

The rest of the paper is structured as follows: Sect. 2 presents the state-of-
the-art related to the hierarchical IoT-Edge-Cloud solutions (E2C) and Feder-
ated Learning (FL). Section 3 describes a decentralised FL-based CC framework
where the edge devices collaborate in a peer-to-peer fashion to improve and
adapt their intelligence (E2E). Section 4 deals with a self-adaptive smart grid
energy application, currently being developed as part of two European projects
SWARM [1] and LASAGNE [2]. Section 5 presents a simulation of the deploy-
ment costs of the smart grid energy application on four CC environments. Since
the architecture of these four environments is E2C, we adjusted their economic
model to suit the E2E architecture of the smart grid energy application. Finally,
Sect. 6 concludes the paper.

Decentralised Federated Learning Based Compute Continuum Framework 221

2 Related Works

This section describes the state of the art related to the E2C solutions and the
FL techniques, in particular decentralised FL.

2.1 E2C and Industrial Solutions

Generally speaking, a self-adaptive ML based application deployed on an E2C
solution is composed of a set of cloud modules (such as database, learning algo-
rithms, etc.) and edge modules supporting ML Models (MLMs) and optimised
for a limited resource edge device. As detailed in Fig. 1 of our previous work [3],
the scenario is the following: An artificial intelligence-based (AI) inference mod-
ule is deployed on this edge device, which is responsible for making predictions on
the input data. The AI inference module is endowed with a ML model (MLM).
This MLM is built and trained in the Cloud.

The system enters a feedback loop enabling continuous intelligence adap-
tation. The edge device autonomously processes IoT sensors’ data. Two cases
may occur: the prediction is satisfying or not satisfying. The related sensing
input which is failing inference is uploaded to the Cloud as “low-performance”
data. This bad data is again labelled and fed for ML training to the AI learning
module: a new MLM is generated which is then redeployed to the edge device.

Several research projects and industrial products are addressing CC needs
as defined in this paper. AWS Amazon and Microsoft Azure offer proprietary
solutions: GreenGrass [4] and IoT Edge Azure [5]. Google proposes a solution
based on a dedicated hardware edge device [6]. Open-source solutions are also
provided by Balena [7], SixSq [8] and EdgeXfoundry [9]. Research projects such
as ACES [10] and ICOS [11] are proposing alternatives to build operating systems
applied to CC.

2.2 Federated Learning vs Decentralised Federated Learning

In 2016, Google first proposed FL [12]. It introduces a novel approach where
MLMs are trained collectively by multiple clients. These clients collaborate with-
out sharing their individual training data; instead, they transmit the models
learned from their local data to a central node. This stands for centralised FL,
also simply called FL, where all machines send their data to a central server for
model execution. FL comes in various types, depending on whether the model
weights are combined at the central server or on individual edge devices. In the
usual approach [13], each node gets the model weights from the main server. It
works on the model, sends the changes back to the server, which then handles
combining the updates from all nodes.

An alternative approach, called decentralised FL [14], also called gossip
learning [15] operates in a fully decentralised manner. In this method, the local
node itself handles both the aggregation and communication tasks. This strategy
reduces the exchange of information among nodes and ensures that confidential
local data remains secure from other nodes. During inter-node communication
phase, each node exclusively shares the calculated weights of its learning model.

222 M. Moussa et al.

3 Towards a Decentralised Federated Learning Based
Compute Continuum-Oriented Architecture

The research work presented in this paper focuses on the implementation of the
E2C and E2E approaches in a CC framework. The first approach, as discussed
in Sect. 2, is E2C setup, where data from edge devices is processed and analysed
at both the edge and cloud levels.

This section describes the architecture and implementation of the second
approach, an E2E architecture that leverages decentralised FL and a coordina-
tion platform. Here, decentralised learning takes place across the edge devices
without any central entity. The coordination platform plays a crucial role in
selecting the “peers” among neighbouring devices, supporting gossip learning,
and providing a full CC-oriented architecture.

3.1 E2E Architecture - Decentralised Federated Learning

Our main contribution is a decentralised E2E architecture based on a FL algo-
rithm and a coordination platform as depicted in Fig. 1. This approach fosters
collaboration among edge devices, leveraging the power of FL. In this decen-
tralised learning paradigm, edge devices work collectively to train models while
preserving data privacy and minimising the need for data transmission to a cen-
tral server. Figure 1 shows a network of edge devices where each edge device (or
group of edge devices) trains its own MLM using only its local data while shar-
ing model weights with its neighbours. The decentralised FL allows each edge
device to leverage its local data to train a personalised model. In this setup,
the edge devices share model weights with their neighbouring devices, facilitat-
ing collaborative learning and knowledge exchange. An underlying coordination
platform provides communication, sharing and aggregation of data and learning
models among the various edge devices. The coordination platform provides a
collective adaptive approach to decentralised FL, as it naturally supports gos-
sip learning, through a flexible choice of the data aggregation operator, and the
spreading option (to which neighbouring edge devices and to which hopping dis-
tance). Section 3.2 discusses the strengths and weaknesses of the E2C and E2E
approaches.

3.2 Limitations and Advantages

We examine the limitations and advantages between the centralised learning
approach implemented via E2C architecture and the decentralised FL approach
implemented through E2E architecture (Fig. 1). Table 1 summarizes the key dif-
ferences between the two approaches, based on the following criteria:

– Privacy: E2C raises privacy concerns as data is transferred and processed in
a centralised data center, while E2E prioritises privacy by performing local
training at the edge devices, ensuring data remains on the devices without
being shared with a central entity.

Decentralised Federated Learning Based Compute Continuum Framework 223

Fig. 1. Decentralised FL-based approach: edge collaborative intelligence

– Latency: E2E enables local training at the edge devices, eliminating the need
for data transfer to a central server, resulting in efficient network usage.

– Scalability: E2E approach supports large-scale training as it can be dis-
tributed across multiple edge devices via FL.

– Genericity: This criterion relates to the model’s ability to perform well on
new edge devices. In FL, where training occurs locally, new edge devices
joining the network may lack direct access to the latest version of the model.
As a result, E2E approach doesn’t provide inference models for these new
devices, impacting their initial performance. Thus, a new edge device should
anticipate bad performance while it gathers the data needed to build its
model. In contrast, E2C models leverage the cloud’s resources, allowing new
edge devices to immediately access the latest model version.

– Hardware (HW) constraints: E2C reduces dependency on resource-
constrained edge devices by offloading heavy computational tasks to the
cloud, while E2E performs local training at the edge devices themselves,
necessitating a certain level of performance from the edge device.

Table 1. E2C vs. E2E

Learning/Architecture Aspects

Privacy Latency Scalability Genericity HW constraints

Centralised learning/E2C × × × � �
Decentralised FL/E2E � � � ∼ ×

224 M. Moussa et al.

By addressing the limitations of traditional centralised learning through E2C
methods and respecting privacy concerns, we propose a novel decentralised FL-
based E2E setup. This approach involves communication between edge devices
and emerges as a promising solution for handling sensitive data at the edge.

4 Smart Grid Energy Use-Case

In this section, we present an overview of the CC-oriented framework specifi-
cally designed for ML-based self-adaptive Energy applications. For the sake of
simplicity, we’ll refer to the edge device used in this context as the Grid Edge
Device (GED). We then discuss the GED architecture and components, followed
by our real-world deployment.

The energy market is witnessing an increasingly digital transition and mar-
ket liberalisation. To support this transition and promote market liberalisation,
digital frameworks employed in the power energy market must incorporate smart
services and enable seamless deployment of ML-based self-adaptive energy appli-
cations. These applications operate on both the GED and the cloud. Some tasks
play out on GEDs, while, other tasks take place in the cloud.

Energy applications cover here peak shaving services, aggregation of
resources, negotiating energy transactions and/or flexibility between consumers
and producers, etc. These applications mainly rely on a forecasting service pro-
vided by a dedicated digital platform, managed and operated by a CC middle-
ware.

4.1 Grid Edge Device (GED) Architecture and Components

This section details the edge components of the smart grid energy application.
Figure 2 zooms in on each GED, illustrating the edge components of the appli-
cation. The GEDs are connected with Cloud via North/South (N/S) links. The
Edge coordination protocol can operate in either a peer-to-peer (P2P) or a cen-
tralised fashion: in the former case, GEDs talk to each other via East/West
(E/W) links (dashed double arrow) through the coordination platform, in the
latter case, GEDs upload edge application data to the Cloud via extra N/S
link (dashed upward arrow). Essentially, each GED is composed of various func-
tional components that collectively enable diverse functionalities, enhancing sys-
tem flexibility. These services are the essential building blocks of the intelligent
framework:

– SmartGrid-Ready interface library: This service enables seamless commu-
nication, energy/load management, and appliance control within the GED.
For instance, it supports dynamic charging management to reduce electricity
peaks during electric car charging, aligning with the grid via the SmartGrid-
Ready interface.

– Database (DB): The DB service employs SQLite as the current storage solu-
tion for the GED. It serves as a repository for device-related data, allowing
efficient and reliable storage of critical information.

Decentralised Federated Learning Based Compute Continuum Framework 225

Fig. 2. GED - architecture and components

– Data Gathering, each GED collects consumption and production data from
appliances and writes it into the local database. Data are collected at frequent
intervals and can goes up to one measurement each 10 s.

– Forecasting service, which generates accurate load prediction for effective
energy management in smart grids, currently exists only as a proof-of-concept.
However, it is planned to be further implemented for our real-field deploy-
ment. This service is crucial as it significantly influences the reliability of
power systems and their economic aspects. It involves the prediction of both
consumption and production for improved energy management.

– Digital Twin and Coordination Platform, this service is able to use the actual
data gathered from our living lab, and support contracts for energy exchange,
peak shaving and decentralised FL.

These services form the core of the GED’s Service-Oriented Architecture
(SOA), enabling efficient and effective energy management within the intelligent
framework. Collectively, these services within the GED’s SOA form a robust
and adaptable framework for intelligent and sustainable energy management.
By providing the necessary infrastructure and services, the SOA empowers the
GED to operate intelligently. Our CC framework relies on the NuvlaEdge [16].

The white blocks, as illustrated in Fig. 2, correspond to the basic services that
form the foundation of our framework. Indeed, this deployment demonstrates our
commitment to the CC approach. By aligning with this paradigm and leveraging
the combined strengths of the GED-based E2C infrastructure and NuvlaEdge,
we fully use the capabilities of the system.

4.2 Meyrin Deployment

We conducted a field study in “Meyrin”, a municipality in the canton of Geneva
(Switzerland), deploying GEDs in operational microgrid infrastructures, specifi-
cally at a school. We selected the CLEMAP device [17] as GED; and NuvlaEdge

226 M. Moussa et al.

[8] a cutting-edge edge computing software solution provided by SixSq, to config-
ure the GED. The CLEMAP GED device, is a Raspberry Pi 3 Model with 1GB
of RAM, that runs on a 32-bit ARMv7l architecture. This integration of GEDs
and NuvlaEdge software establishes a resilient CC infrastructure, where GEDs
collect and transmit data while NuvlaEdge orchestrates the necessary computing
power and intelligent analytics for data processing and analysis at the edge.

Fig. 3. Electrical diagram of the CLEMAP devices (GEDs) deployment

The Living Lab of “Les Vergers” [18] in Meyrin consists of three school build-
ings as illustrated in Fig. 3: Gymnastic room, After-school building, Primary
school and an Underground space. The current deployment relies on an E2C
infrastructure, but we are pursuing the development of an E2E alternative. The
current installation is composed of seven CLEMAP (GEDs) across the three
different buildings. These GEDs measure the power flows of various electrical
appliances. Starting from May 2022, we have been collecting measurement data.
Each GED collects power, voltage, and amperage measurements every 10 s. These
measurements are regularly sent to a cloud server provided by Exoscale [19]. In
addition to the GED data, the local utility provider, “Services Industriels de
Genève (SIG)”, contributes power measurements from its own supply and solar
panels.

5 Experimental Work and Cost Comparison

The goal of this section is to evaluate the cost of deploying ML-based self-
adaptive IoT application on E2C and E2E CC platforms. Currently, communi-
cations among edge devices are not supported by the CC platforms. They can,

Decentralised Federated Learning Based Compute Continuum Framework 227

however, be programmed at the application level. Therefore, our approach will
be to:

1. adapt the economic/business models of the E2C solutions to meet E2E archi-
tecture’s requirements. For instance, consider adjusting pricing structures to
accommodate the different resource usage patterns of E2E deployments.

2. simulate the execution of a given ML-based self-adaptive IoT application on
a set of E2C platforms for a given number of edge devices over a given period
of time.

3. use the same application to simulate its execution on the “E2E” versions of
the selected E2C platforms by using the adapted economic/business models.

As discussed in our previous study [3], the E2C approach introduces costs
associated with infrastructure provisioning, data storage, and computational
resources, depending on the scale of the deployment, data volume, and retraining
frequency. Retraining, driven by unsatisfactory predictions, can lead to increased
cloud resource utilisation and subsequently higher expenses. In the case of E2E,
this cost is reduced to zero because the learning takes place on the edge devices.
Additionally, as detailed in [20], the proposed decentralised FL-based approach
provides privacy-preserving benefits in comparison to non-private centralised
models, albeit with a minor compromise in prediction accuracy.

Moreover, our comparative study of the deployment cost of self-adaptive
applications assumes that CC solution providers will not be charging for
exchanges between edge devices nor for running edge applications. The cost
breakdown is structured into the following six services:

– Edge management, it refers to the expenses associated with managing and
maintaining the edge computing infrastructure within an IoT system. The
main cost includes:
• Registration: registering an edge device within the management system,

which may involve fixed costs such as specific telemetry metrics or licens-
ing fees.

• Yearly Subscription: the cost associated with an annual subscription
• Connectivity: the cost per minute of connectivity, assuming that the edge

device remains connected 24/7.
– Messaging. We take into account the costs related to communication

between the edge and the cloud, which involve telemetry and application
messages. Telemetry messages provide real-time data for analysis and mon-
itoring, while application messages trigger cloud operations such as device
status updates, statistic aggregation, and dashboard visualisation. We ensure
accurate pricing calculations by converting message volume-based pricing if
necessary. We consider that E2E communication are free of charge.

– Data transfer. Transferring data between the edge and the cloud, as well
as between different cloud services, may have associated costs. We categorise
these transfers into three types: Cloud-to-Edge, Edge-to-Cloud, and Intra-
Cloud. Regarding Intra-Cloud transfers, we assume they occur within the
same data center or closely connected centers.

228 M. Moussa et al.

– Storage. Storing each unit of space carries a cost, and performing read and
write operations may also result in associated expenses.

– Computing. Using any application’s cloud component for each hour will
result in costs. Additionally, there are extra charges for a minimum amount
of attached storage.

– Helpdesk. Technical support.

In order to conduct a comparative cost analysis between the E2C and E2E
approaches, we have used the cost estimation model developed in [3] The cost
estimation was performed using the application described in Sect. 4. In this
simulation, we used four CC environments: Amazon AWS, Microsoft Azure,
NuvlaEdge + Exoscale and Balena + Exoscale. Table 2 shows the parameters
used for the analysis. The cost evaluations are based on the premise that each
“solution” addresses all the messaging, data transfer, storage, and computa-
tion needs of the edge application. Among the four CC environments used in the
experiment, AWS and Azure are the only ones offering fully-integrated solutions,
while the remaining technology providers such as Balena and Nuvla require part-
nerships with other service provider. As aforementioned, we used NuvlaEdge and
Exoscale for our E2C deployment; and our current E2E deployment exclusively
relies on NuvlaEdge for edge management. Figure 4 provides a cost breakdown
comparison between E2E and E2C for a deployment comprising 1K GEDs over a
one-year period, considering various solution providers. In our deployment, mes-
saging and edge management are the primary cost factors. The E2C approach for
edge applications incorporates separate communication channels for application
messages and infrastructure control messages. We categorize messages into two
classes: application and telemetry, which includes monitoring and logging func-
tionalities. These messages are efficiently handled by distinct services within the
system. Application messages flow through the Communication Hub component,
while telemetry messages are processed by a dedicated sub-component of the IoT
Infrastructure Management, or alternatively, by the Communication Hub if the
dedicated service is unavailable. With the E2E approach, messaging costs are
significantly reduced, and in all cases, nearly eliminated altogether. Unlike the
traditional cloud-based approach, where messaging infrastructure is necessary
for application and telemetry messages, the E2E approach operates indepen-
dently from the cloud. As a result, the E2E approach substantially reduces costs

Table 2. Cost model’s parameters

Parameter Description Value

Event rate MLM Trigger Rate 60

Raw data footprint MLM Input Size ∼0.1 MiB/sample

ML error rate MLM Prediction Error 9%

ML training time MLM Training Time (1 vCPU) ∼4 h @ 1vCPU

ML training rate MLM Training Rate (Cloud) ∼8 round/month

Decentralised Federated Learning Based Compute Continuum Framework 229

related to messaging, computing, storage, and data transfer. However, it’s crucial
to consider the limited resources of edge devices when implementing the E2E
approach. This consideration becomes paramount as E2E involves local train-
ing and collaboration between edge devices, without relying on centralised cloud
resources.

Fig. 4. Cost breakdown for 1K-deployment over 1 year: E2C vs E2E

6 Conclusion

This paper presents two CC-oriented architectures used to deploy ML based
self-adaptive IoT applications: Edge-to-Cloud (E2C) and Edge-to-Edge (E2E)
architecture. In the E2C architecture, the edge intelligence is controlled by the
cloud, while in the E2E architecture, the intelligence is the result of a peer-to-
peer decentralised collaborative/FL among the edge devices. The E2E approach
is well suited to IoT applications where the learning cannot be done centrally
and/or where data privacy is a major issue. We have experimented the two
models in the concrete case of a smart grid energy application. We also simulated
the deployment cost of the same application, using the two models, on four
different CC environments. In the four cases, the deployment cost of the E2E
architecture is much lower than that of the E2C architecture.

It’s worth reminding here that the current available CC platforms do not
support direct exchanges among edge devices (E2E architecture). These commu-
nications must be handled by the developer at the level of the IoT application.
The framework presented in Sect. 4 aims to support this type of communica-
tion through the coordination platform. Finally, future work involves exploiting
further the coordination platform for providing decentralised and gossip-based
learning with higher accuracy results.

Acknowledgment. This paper is supported by the LASAGNE project funded by
ERA-NET 108767, and the SWARM project funded by Eurostars E!115513.

230 M. Moussa et al.

References

1. SWARM project. https://lsds.hesge.ch/smart-and-widely
2. LASAGNE project. https://lsds.hesge.ch/digital-framework-for-smart-grid/
3. Poleggi, M.E., Abdennadher, N., Dupuis, R., Mendonça, F.: Edge-to-cloud solu-

tions for self-adaptive machine learning-based IoT applications: a cost comparison.
In: Bañares, J.Á., Altmann, J., Agmon Ben-Yehuda, O., Djemame, K., Stankovski,
V., Tuffin, B. (eds.) GECON 2022. LNCS, vol. 13430, pp. 89–102. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-29315-3 8

4. Amazon Web Services: IoT Greengrass. https://aws.amazon.com/greengrass/
5. Microsoft: Azure IoT Edge. https://azure.microsoft.com/en-us/products/iot-

edge/
6. Google: Google Cloud IoT Core. https://cloud.google.com/iot-core
7. Balena: Balena. https://www.balena.io/
8. SiqSq SA: Nuvla. https://sixsq.com/products
9. EdgeXfoundry: EdgeX. https://www.edgexfoundry.org/software/platform/

10. Autopoietic Cognitive Edge-cloud Services, ACES. https://www.aces-edge.eu/
partners/

11. Towards a functional continuum operating system, ICOS. https://www.icos-
project.eu

12. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency, arXiv preprint
arXiv:1610.05492 (2016)

13. Savi, M., Olivadese, F.: Short-term energy consumption forecasting at the edge: a
federated learning approach. IEEE Access 9, 95949–95969 (2021)

14. Liu, W., Chen, L., Zhang, W.: Decentralized federated learning: balancing commu-
nication and computing costs. IEEE Trans. Signal Inf. Process. Netw. 8, 131–143
(2022)

15. Hegedűs, I., Danner, G., Jelasity, M.: Gossip learning as a decentralized alternative
to federated learning. In: Pereira, J., Ricci, L. (eds.) DAIS 2019. LNCS, vol. 11534,
pp. 74–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22496-7 5

16. NuvlaEdge. https://sixsq.com/nuvlaedge
17. With CLEMAP into the energy future. https://en.clemap.ch
18. Les Vergers | Ecoquartier Meyrin Les Vergers. https://www.lesvergers-meyrin.ch/

ecoquartier/les-vergers
19. A solid European cloud hosting alternative. https://www.exoscale.com/
20. Moussa, M., Abdennahder, N., Couturier, R., Di Marzo Serugendo, G.: Towards

a scalable compute continuum platform applied to electrical energy forecasting
(2023)

https://lsds.hesge.ch/smart-and-widely
https://lsds.hesge.ch/digital-framework-for-smart-grid/
https://doi.org/10.1007/978-3-031-29315-3_8
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/products/iot-edge/
https://azure.microsoft.com/en-us/products/iot-edge/
https://cloud.google.com/iot-core
https://www.balena.io/
https://sixsq.com/products
https://www.edgexfoundry.org/software/platform/
https://www.aces-edge.eu/partners/
https://www.aces-edge.eu/partners/
https://www.icos-project.eu
https://www.icos-project.eu
http://arxiv.org/abs/1610.05492
https://doi.org/10.1007/978-3-030-22496-7_5
https://sixsq.com/nuvlaedge
https://en.clemap.ch
https://www.lesvergers-meyrin.ch/ecoquartier/les-vergers
https://www.lesvergers-meyrin.ch/ecoquartier/les-vergers
https://www.exoscale.com/

Detecting Model Changes
in Organisational Processes: A

Cloud-Based Approach

J. Fabra1(B), V. Gallego-Fontenla2, J. C. Vidal2, J. Garćıa de Quirós1,
P. Álvarez1, M. Lama2, A. Bugaŕın2, and A. Ramos-Soto3

1 Computer Science and Systems Engineering Department,
Engineering Research Institute of Aragon (I3A), University of Zaragoza,

Zaragoza, Spain
{jfabra,jgarciaqg,alvaper}@unizar.es

2 Research Center in Intelligent Technologies, University of Santiago de Compostela,
A Coruña, Spain

{victorjose.gallego,juan.vidal,manuel.lama,alberto.bugarin.diz}@usc.es
3 Inverbis Analytics, Lugo, Spain

alejandro.ramos@inverbisanalytics.com

Abstract. Process mining techniques extract knowledge from event logs
within organizations to understand and improve the behavior of their busi-
ness processes. These techniques utilize a wide range of methods to auto-
matically generate process models from event log data, simplify these mod-
els, calculate various indicators to optimize performance, and visualize
and explain model behavior. However, these techniques often treat process
models as static entities, despite the inherent dynamic nature of processes.
Commercial platforms frequently lack the ability to detect and describe
changes (also known as concept drift) in the models, which can impact the
conclusions and results derived from process mining. This paper presents
the INSIDE-TUTTO project, which has developed a concept drift detec-
tion algorithm for application in business organizations and transition to
the commercial market through Inverbis Analytics. The original algorithm
was not designed to operate in real-world scenarios with large volumes
of data. By combining distributed architectures and the cloud computing
paradigm, the algorithm was evolved into a commercial version deployed
within Inverbis Analytics’ Azure-based technological infrastructure.

Keywords: Process models · Concept drift · Cloud computing ·
Research results transfer · Microsoft Azure

1 Introduction

Process mining techniques have emerged as a powerful tool for understanding
organizational behavior through knowledge extraction from information systems’
event logs. These techniques aim to discover, monitor, and enhance real pro-
cesses [3].
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 231–236, 2023.
https://doi.org/10.1007/978-3-031-46235-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_15

232 J. Fabra et al.

Several process mining techniques have been widely adopted in commercial
platforms, including: (i) Process discovery, which seeks to automatically gener-
ate a process model capable of reproducing event log traces while accurately
and concisely representing activity relationships. All commercial platforms uti-
lize process discovery algorithms [8] because the analytics derived from these
models form the foundation of process mining; (ii) Process model simplifica-
tion, which modifies process models for improved comprehension, especially for
unstructured processes that require high-completeness models. Although recent
proposals integrate infrequent behavior into abstract activities [5], most plat-
forms employ an incremental visualization strategy, adding observed behavior
to the model based on its frequency; (iii) Process conformance checking, which
describes and quantifies differences between the process model and the event
log’s observed behavior [4]. Commercial platforms use suboptimal strategies to
align traces with the process model, which are sufficient to identify deviating
trace types and the extent of the deviation; (iv) Visualization and description
of process/model analytics (enrichment) offer textual descriptions that comple-
ment model visualization utilities and process analytics, aiding user navigation
and focusing attention on process-relevant aspects [6]. Currently, no commercial
platform incorporates components for generating textual descriptions.

These techniques often consider the process model as static, assuming a sin-
gle model encapsulates all event log behavior. However, processes are inherently
dynamic, especially unstructured ones where the model is a temporal combina-
tion of multiple process models. Identifying and describing when a process model
no longer represents the observed behavior due to abrupt or gradual changes [7]
is a crucial aspect of process analysis. Yet, no commercial platform includes
techniques for detecting and describing changes (concept drift) in the models,
limiting the conclusions and results obtained from other process mining tech-
niques. Moreover, change detection algorithms are resource-intensive, relying on
model extraction as new process executions (or traces) are generated. There-
fore, adapting and deploying such algorithms in the cloud is a prerequisite for
developing a commercial solution for detecting process model changes.

In this context, the INSIDE-TUTTO project is funded through the I+D+i-
Proof of Concept call by the Ministry of Science and Innovation of the Gov-
ernment of Spain. It is also partially financed by the European Union within
the NextGenerationEU program. The project is coordinated by the University
of Santiago de Compostela and the University of Zaragoza and has a duration
of 24 months. The primary objective of the project is to design a flexible and
adaptive service infrastructure capable of detecting and describing changes in
process models. This system will: (1) operate across multiple cloud providers,
optimizing for performance and cost intelligently, and (2) integrate seamlessly
into individual company technological frameworks, particularly concerning data
repositories. Moreover, a service-oriented application will be developed to assist
business analysts in understanding their processes.

A key aspect of the project is adapting an algorithm for the abrupt detection
of changes in process models and deploying it in the cloud for operation in big

Detecting Model Changes in Organisational Processes 233

data environments. This algorithm, as cited in [7], monitors process compliance
metrics (namely fitness and accuracy) over time, enabling the detection of most
changes without significantly increasing computation time. Thus, the algorithm’s
adaptation and deployment in the cloud, leveraging flexible resource allocation
based on log size, are critical. This paper introduces the developed solution and
its integration with InVerbis Analytics [1], a cloud-based process mining plat-
form. This platform facilitates big data environment process analytics extraction,
encompassing variant analysis, model discovery, pattern extraction, and confor-
mance analysis. The integration of the change detection algorithm represents a
strategic milestone for InVerbis Analytics, given that these analytics hinge on
the process model.

The paper is structured as follows: Sect. 2 presents the cloud-based archi-
tecture supporting the concept drift algorithm’s execution; Sect. 3 describes
the architecture’s deployment on Microsoft Azure; and Sect. 4 summarizes the
paper’s main achievements and discusses future work.

2 Distributed Architecture of the Algorithm

The concept drift algorithm presented in [7] was designed for sequential execu-
tion. Processing medium-sized logs to detect changes in corresponding models
proved time-consuming. Experimental analysis concluded that while the algo-
rithm effectively addressed the detection problem, it was not readily applicable
to real production environments where logs are complex and voluminous. As
such, the architecture of the original algorithm required redesign, integrating
existing techniques, but leveraging parallel and cloud computing solutions.

An architecture, based on the Master-Worker pattern, has been designed to
support the parallelization of the new drift detection algorithm version. Figure 1
depicts the primary components of this architecture. In this design, the log of
execution traces for analysis is stored in a centralized database. The parallel
processing of these traces is performed by a master and a set of workers. The
master divides and distributes the workload among the workers, retrieves results,
and manages drift detection. This requires the master to maintain a record
of pending traces for analysis and the state of workers involved in distributed
processing. The workers operate in a request-response manner: upon receiving a
new request, they execute the drift detection algorithm for the specified set of
traces and return the corresponding result (whether a change was detected or
not) to the master.

The architecture accommodates the integration of two pools of workers. One
is static, with a predetermined number of workers, configured prior to system
execution (at the bottom of Fig. 1). The other is dynamic, adjusting the number
of workers according to performance and system processing workload (left side
of the figure). Additional workers can be deployed on-demand (or halted when
not needed) to respond to unexpected situations, such as unwarranted failures
and communication delays. This adaptability gives the architecture a dynamic
nature, manageable at runtime by either the master or the system administrator.

234 J. Fabra et al.

Finally, several components are responsible for supporting the operation of
the distributed pattern. The Resource Registry contains information about the
location, configuration, and access credentials of the database and the workers.
This information is dynamically utilized by the master to set up and start the
execution of the processing infrastructure. The Monitoring Service records vari-
ous metrics regarding workers’ performance. The Decision Advisor continuously
analyzes these metrics, providing recommendations for configuring on-demand
workers.

3 Deployment and Delivery of the Distributed Algorithm

The architecture depicted in Fig. 1 has been deployed using Microsoft Azure [2],
as illustrated in Fig. 2. Azure is Microsoft’s suite of cloud computing services,
providing a diverse range of solutions for businesses. This includes infrastructure
as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS),
along with an extensive array of products for networking, storage, mobile, web
applications, machine learning, AI, IoT, security, and more. Users can build,
deploy, and manage applications across Microsoft’s global data centers.

We have optimized the deployment processes, utilizing both Azure Virtual
Private Cloud and Azure Compute services. These services facilitate easy scaling
of resources based on problem requirements. This is particularly valuable in our

Fig. 1. Architecture

Detecting Model Changes in Organisational Processes 235

Fig. 2. Deployment of our approach on Azure

architecture where we might need to add more worker nodes to distribute the
load. Moreover, Azure assures high availability, offering a robust infrastructure
less prone to downtime.

Notably, the static and on-demand worker pools are separate resource groups,
with the on-demand pool linked to a set of virtual image template services. The
entire resource set is connected to Azure Monitor and Log Analytics services to
collect and display diagnostic logs and metrics.

For the trace repository, we chose Azure Cosmos DB, a globally distributed,
multi-model database service for managing data at scale. This decision was influ-
enced by the fact that the data models of InVerbis Analytics are deployed on
this data service, thus simplifying the integration of the distributed algorithm
with the InVerbis technological infrastructure.

The entire deployment was conducted using basic services common to other
cloud providers. Virtual machines encapsulate all the business logic through
scripting and compiled code, which means this deployment could be easily repli-
cated with other providers such as Amazon Web Services (AWS) or Google
Cloud.

4 Preliminary Conclusions and Future Work

This paper presents the adaptation of a process model change detection algo-
rithm (concept drift) to operate in big data environments. Specifically, it delin-
eates the necessary adjustments made for its deployment on the Microsoft Azure
platform using the same data model as InVerbis Analytics, a commercial process
mining platform that integrates discovery, conformance, simplification, and pro-
cess description algorithms. It is noteworthy that the change detection algorithm
has been successfully tested on process logs in logistics, telecommunications, and
industry, detecting changes in the model that have helped to understand and
improve process behavior, as it facilitates model visualization.

236 J. Fabra et al.

Large-scale experimentation is currently underway to determine the optimal
deployment and delivery methods for the distributed detection algorithm, consid-
ering business, economic, and operational perspectives. On one hand, we are ana-
lyzing the performance of different virtual computing instances and configura-
tions of the Master-Worker architecture (optimal size of the static and dynamic
worker pools, effect of geographic distribution of instances, different strategies
and policies for data management in worker nodes, etc.). On the other hand, we
are studying the impact of the algorithm’s different configuration parameters on
its execution time and the precision of change detection, especially when work-
ing with large logs. The cost of computing and data resources involved in the
different executions is analyzed to achieve a balance between the performance
of the contracted resources and the price customers pay for effective and precise
results. The ultimate goal is that the knowledge gained during this experimen-
tation allows InVerbis Analytics to configure a customized deployment for each
particular customer.

As for future work, we propose to validate the change detection algorithm,
and specifically, the cloud architecture, in environments with noise (unstructured
processes), where there is a greater number of false positives (new traces that are
not actual changes). We will also carry out tests in real big data environments
to contrast the preliminary performance/cost results with those obtained from
actual executions.

References

1. Inverbis Analytics. https://processmining.inverbisanalytics.com/
2. Microsoft Azure. https://azure.microsoft.com/
3. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Berlin,

Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
4. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -

Relating Processes and Models. Springer, Berlin, Heidelberg (2018). https://doi.
org/10.1007/978-3-319-99414-7

5. Chapela-Campa, D., Mucientes, M., Lama, M.: Understanding complex process
models by abstracting infrequent behavior. Futur. Gener. Comput. Syst. 113, 428–
440 (2020). https://doi.org/10.1016/j.future.2020.07.030

6. Fontenla-Seco, Y., Lama, M., González-Salvado, V., Peña-Gil, C., Bugaŕın, A.J.: A
framework for the automatic description of healthcare processes in natural language:
application in an aortic stenosis integrated care process. J. Biomed. Inform. 128,
104033 (2022). https://doi.org/10.1016/j.jbi.2022.104033

7. Gallego-Fontenla, V., Vidal, J.C., Lama, M.: A conformance checking-based app-
roach for sudden drift detection in business processes. IEEE Trans. Serv. Comput.
16(1), 13–26 (2023). https://doi.org/10.1109/TSC.2021.3120031

8. Kerremans, M., Iijima, K., Sachelarescu, A.R., Duffy, N., Sugden, D.: Magic quad-
rant for process mining tools

https://processmining.inverbisanalytics.com/
https://azure.microsoft.com/
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1016/j.future.2020.07.030
https://doi.org/10.1016/j.jbi.2022.104033
https://doi.org/10.1109/TSC.2021.3120031

Short Papers

A Taxonomy for Workload Deployment
Orchestration in the Edge-Cloud

Continuum

Toon Albers1(B) , Mattia Fogli2 , Edwin Harmsma1, Elena Lazovik1 ,
and Harrie Bastiaansen1

1 TNO, Groningen, The Netherlands
{toon.albers,edwin.harmsma,elena.lazovik,harrie.bastiaansen}@tno.nl

2 University of Ferrara, Ferrara, Italy
mattia.fogli@unife.it

Abstract. As compute resources continue to proliferate from static
large-scale enterprise-grade cloud environments to various types of more
dynamic and resource-constrained edge environments, the need increases
to orchestrate the deployment of workloads of data and processing appli-
cations across the emerging edge-cloud continuum. For many use cases
in various application domains and contexts, similar workload deploy-
ment orchestration challenges arise. We present a taxonomy for workload
deployment orchestration in the edge-cloud continuum that captures the
various views and perspectives on workload deployment orchestration.
We evaluate and valorise the proposed taxonomy by means of three illus-
trative and representative types of use cases from different domains and
present opportunities for future research.

Keywords: Cloud Orchestration · Deployment Orchestration · Edge
Computing · Edge-Cloud Continuum · Federated Cloud · Taxonomy

1 Introduction

Current digitisation of societal sectors and infrastructures can be characterised
by: (1) ubiquitous sensing, processing, storage, and communication capabilities
and (2) the emergence of (distributed and federated) edge-cloud data storage and
processing infrastructures. As such, orchestration of data sharing and processing
workloads over dynamic federated cloud-edge infrastructures poses a recurring
challenge in different operational contexts. Workload deployment orchestration
(also referred to as ‘App Deployment Orchestration’) is the process that enables
cloud and application providers to define how to select, deploy, monitor and
configure (multi-container) packaged applications in the cloud at run-time. It
encompasses the deployment, execution and maintenance phases [4,7]. A work-
load deployment orchestrator is responsible for resource limit control, scheduling,
load balancing, health checking, fault tolerance management and autoscaling.

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 239–250, 2023.
https://doi.org/10.1007/978-3-031-46235-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_16&domain=pdf
http://orcid.org/0000-0002-1621-7402
http://orcid.org/0000-0002-9875-4550
http://orcid.org/0000-0001-9691-6723
https://doi.org/10.1007/978-3-031-46235-1_16

240 T. Albers et al.

Exemplary for a broader context in which the importance of cloud technology
and workload deployment orchestration are currently gaining major interest are
the developments around the European Data and Cloud strategy [8]. Driven by
the importance attributed to the emerging data economy with extra attention
to data sovereignty and security, legal [9] and technical frameworks are being
created for a converged data and cloud environment. Reference architectures
(such as the IDSA1, Gaia-X2 and DSBA3 initiatives) and the DSSC4 are being
developed, coordinated under the umbrella of the EU Directorate-General Con-
nect (DG CONNECT). These initiatives show the importance of the emerging
‘converged’ data plan and cloud infrastructure.

A large diversity of perspectives and challenges on workload deployment
orchestration exists for an edge-cloud continuum. Therefore, a taxonomy describ-
ing these perspectives can be of major benefit for (1) efficiency in identifying its
challenges and complexities in a specific context and, as such, (2) supporting the
effective design and development of a workload deployment orchestrator for that
context, or (3) evaluating existing orchestrators for a specific use. In this paper
we refer to the edge-cloud continuum, whilst increasingly individual ‘devices’
are taken into account, giving rise to a ‘device-edge-cloud continuum’. Although
well-recognised by the authors, within this paper it will be referred to as edge-
cloud continuum without impacting the contents of the taxonomy.

This paper addresses the research topic to “design a taxonomy for workload
deployment orchestration in the edge-cloud continuum that describes the broad
variety of challenges in emerging and converged data sharing and federated cloud
infrastructures, and supports architects in exploring the design complexities and
developing solutions for such orchestration”. This topic has been addressed by
means of the Experience Report methodology [17]. Based on experience in vari-
ous use cases and projects such as ENERSHARE5 and ECiDA6, we established
the relevance for an overarching taxonomy describing the various aspects of
workload deployment orchestration in different contexts. In combination with
an exploration of related work on such a taxonomy, the need for an extended
taxonomy applicable to the edge-cloud continuum was identified and elaborated.

This paper has the following structure: Sect. 2 introduces and describes the
proposed taxonomy for workload deployment orchestration in the edge-cloud
continuum. An overview of related taxonomies is provided in Sect. 3. The pro-
posed taxonomy is evaluated and valorised by means of three representative
types of use cases in Sect. 4, after which the future direction and the overarching
conclusions are presented in Sect. 5 and Sect. 6, respectively.

1 International Data Spaces Association (IDSA), https://internationaldataspaces.org.
2 EU Gaia-X Initiative, https://www.gaia-x.eu.
3 Data Space Business Alliance (DSBA), https://data-spaces-business-alliance.eu.
4 Data Spaces Support Centre (DSSC), https://dssc.eu.
5 See enershare.eu.
6 See commit2data.nl/en/projects/ecida-evolutionary-changes-in-distributed-analysis.

https://internationaldataspaces.org
https://www.gaia-x.eu
https://data-spaces-business-alliance.eu
https://dssc.eu
https://enershare.eu/
https://commit2data.nl/en/projects/ecida-evolutionary-changes-in-distributed-analysis

A Taxonomy for Workload Deployment Orch. in the Edge-Cloud Continuum 241

2 Taxonomy

Workload Deployment Orchestration

Workload Scheduling Behaviour Modeling Data Environment Actors

Fig. 1. Main concepts of the taxonomy

We have identified a set of six high-level concepts, shown in Fig. 1, con-
stituting the general problem space of workload deployment orchestration in
the edge-cloud continuum: Workload, Scheduling, Behaviour Modeling, Data,
Environment and Actors. When further broken down into sub-categories7, these
concepts allow specific problem instances to be identified and characterised.

Workload

Data flow topology

Flexibility

Scale

Geospatial

Temporal

Resource usageArchitectureType

Virtual (representation
of physical asset)

Energy

Device constraints

Network traffic

Processing
footprint

RAM CPU GPU

Single workload /
monolithic

Distributed

DAG / Structured

Decentralized /
Co-located

Hierarchical

Data/model/artifact

Virtual (representation
of physical asset)

Timespan

Application state

Periodical Continuous One-time

StatefulStateless

TPUBatch

Peer-to-peer
intercommunicating

Client-server /
hierarchical

Triggered (cloud-
native, streams)

Fig. 2. Workload taxonomy

Workload (Fig. 2) covers the asset that is being orchestrated. These are
typically applications, but could also entail data gathering or movement, or vir-
tual representations of physical assets. Specific challenges arise for applications
depending on if they are stateful (storing data persistently to operate success-
fully) or stateless. We can also distinguish jobs in relation with their timespan:
those running once until completion, periodic jobs and permanently running jobs
require different strategical workload mechanisms to apply. There is also a dif-
ference in who triggers the job, and does it handle batch or streaming data. In
the latter case, secondary control mechanisms ensure that effects decided by the
orchestrator, are subsequently applied to the streams connected to real-world
assets. Workload composition, e.g. monolithic versus distributed, also poses dis-
tinct challenges. Furthermore, we can identify different topologies in both data-
flow and infrastructure, ranging from peer-to-peer data flows between multiple

7 A digital version of this taxonomy can be found at https://github.com/TNO/
deployment-orchestration-taxonomy-supplimentary-materials.

https://github.com/TNO/deployment-orchestration-taxonomy-supplimentary-materials
https://github.com/TNO/deployment-orchestration-taxonomy-supplimentary-materials

242 T. Albers et al.

heterogeneous clusters, to hierarchical client-server communication. Workloads
from applications often use resources - virtual or physical - and might have inher-
ent characteristics that introduce flexibility in orchestration, for example when
they can be postponed, scaled up, or moved to a different data centre.

Scheduling

Architecture Metrics / Objectives Policies / constraints Strategy

Automated

User-defined /
manual

Hybrid /
human-in-the-loop

Mathematical
models (MILP)

Heuristic-based

Machine
learning-based

Hybrid

Market-based /
coordination

Location

Domain
constraints

HybridCentralized

Decentralized Data quality

Scheduling
communication overheadCost (monetary)

Carbon footprint

Network

Security

Trust

Bandwidth Latency Loss

Scalability

Resource utilization

Availability

Energy
CPU/GPU
/TPU

RAM

Broker

Multi-agent of User

of Hardware

of Data

Physical
constraints

Organizational
policies

Performance

Disk

Computational
speed

Reliability

Arrival rate

Multi-level

Rescheduling

Task
preemption

Task
rescheduling

Fig. 3. Scheduling taxonomy

Scheduling (Fig. 3) covers the methods and means of the scheduling
paradigm(s) employed by the orchestrator. Scheduling is done algorithmically
and is typically user-defined, though we also see hybrid methods where there
is a human-in-the-loop to validate and approve, or give feedback to algorithmic
approaches. Often, other problem characteristics dictate the specific algorithm.
For example, in edge environments where bandwidth is limited and coordina-
tion is expensive, a locally deployed machine learning model working on incoming
data may be more suitable. The scheduler operates with input metrics that are
observed, a set of policies and constraints, and typically optimizes for one or more
objectives. Depending on the actor model, as well as environmental constraints,
the scheduling solution can be centralised (with a broker or similar middleware
between nodes for more control) or decentralised (with nodes as independent
actors with their own behaviour).

Behaviour Modeling (Fig. 4) identifies the ways in which modeling
approaches are used in deployment orchestration. Modeling can be applied
to many types of challenges in deployment orchestration. Typical approaches
include workload characterisation—where resource usage of workloads is moni-
tored in order to construct a generalised model—and methods to achieve spe-
cific goals on consistency of running computations—for example, to use anomaly
detection techniques as a method that aims to identify abnormal data or pat-
terns, typically by comparing against previously established models. There are
myriad methods to facilitate modeling, each with their strengths and weaknesses.

Data (Fig. 5) entails the different ways in which data is stored, accessed,
used, monitored, and managed throughout deployment orchestration in the edge-
cloud continuum. We consider specific challenges in the security domain, for

A Taxonomy for Workload Deployment Orch. in the Edge-Cloud Continuum 243

Behaviour Modeling

Method

Grid searchHypothesis testing (co-) Simulation

Type

Workload
characterization

Performance
analysis

Dependency
checkingAnomaly detection Manual

Fig. 4. Behaviour modeling taxonomy

example when managing secrets, when handling privacy-sensitive data, and in
facilitating access to restricted data. Additionally, data location can be altered
for various purposes, such as for data gravity, caching, migrations or backups.

Data

Quality

Metadata management

Migrations & backup

Monitoring

Type

Access

Privacy & Security

Gravity, locality & cachingText/numerical Blob/binary

Image

Audio

Structured

Unstructured

Time-series

Health

Size

Location

Video

Storage

Versions,
deduplication

Archive,
compression

Ingestion

Streaming

Batch

Fig. 5. Data taxonomy

Environment (Fig. 6) characterizes the computational context and topology
of the IT infrastructure hosting the workloads. This context can be static and
unchanging, or dynamic. In the latter case, orchestration solutions should be
aware of this changing environment, incurring additional monitoring overhead.
Orchestration solutions might exist in, and manage, virtualised environments,
or bare-metal infrastructure. Likewise, the compute and networking resources
available to them may vary drastically, and even be unavailable for extended
periods of time.

Environment Computing resource availability

Virtualization

Multi-node

Single node

Multi-clusterSingle cluster

Heterogeneous,
hybrid

Homogeneous

Intermittent
connectivty

Unconstrained,
large scale

Constrained
connectivity

Constrained processing
resources

Containerized

Bare-metal

Virtual machines

Context

Static Dynamic

Micro VM (WASM)

Infrastructure topologyResource management

Granularity

Oversubscription

Shared access

Specifications (entity
model, relationships)

Unikernel

Isolation

Process Network Data

Fig. 6. Environment taxonomy

Actors (Fig. 7) maps the ways in which stakeholders might interact in a given
deployment orchestration problem. These actors could be end users, application

244 T. Albers et al.

providers, or even infrastructure providers. The way in which they interact, for
example standalone, collaboratively, competitively, or even maliciously towards
each other, introduces additional constraints to the deployment orchestration
problem, and will be reflected in the scheduling solution’s structure. Scheduling is
easiest with a single stakeholder, and requires extra organisational and technical
interoperability solutions if multiple stakeholders are involved.

Actors

Collaborative
Adversarial /
malicious

Competitive
Individual /

non-communicative

Decentralized /
democratized

Topology Type

End-user
Application
provider

Infrastructure-,
platform provider

Multi-stakeholderSingle stakeholder

Trusted

Mandated

Hierarchical

Fig. 7. Actors taxonomy

3 Related Work

Other taxonomies often focus on specific deployment orchestration aspects. We
have made a matching between these taxonomies and the taxonomy proposed
in this paper to ensure full coverage of their concepts, aside from having added
new concepts not present in related work.

Nguyen et al. [15] provide a taxonomy of IoT deployment orchestration,
although they focus more on analyzing scientific literature compared to what
is out in the field. Their taxonomy also discusses implementation details such as
DSL, programming model and inter-workload communication mechanism, which
we purposefully avoid.

Weerasiri et al. [18] created a taxonomy for cloud resource orchestration.
They briefly cover workload deployment orchestration but do not go into details.
They also cover expected types of users (DevOps, Application Developers,
Domain experts), knowledge reuse (templates, resource snapshots, community
support, etc.) and resource representation and access (CLIs, SDKs, etc.) which
we consider too implementation-specific for our taxonomy.

Bentaleb et al. [2] provide an overview of containerisation, but also include
a taxonomy covering limited parts of orchestration and resource management.
We cover the whole taxonomy of [2], often more elaborately because our taxon-
omy is not focused only on containerised workloads. This also results in some
naming differences in the taxonomy. For example, they use application instead
of workload, but workload is more generic and for orchestration we care about
specific workloads and not the applications to which they belong. They do not
elaborate the scheduling part of their taxonomy, instead delegating this task to
tools such as Kubernetes, but for deployment orchestration we consider this an
important aspect. Unlike [2], our taxonomy does not explicitly mention lifecycle
management as we consider the whole orchestration to be based around it.

A Taxonomy for Workload Deployment Orch. in the Edge-Cloud Continuum 245

Mampage et al. [14] provide a taxonomy focusing on serverless workloads.
However, many of the aspects of serverless workloads, such as workload manage-
ment and QoS goals, are also applicable to (containerised) workloads in general.
They also include ‘billing model’ in their taxonomy, which we consider to be
part of the cloud provider perspective and therefore do not include.

Rodriguez and Buyya [16] provide an elaborate cluster orchestration taxon-
omy. Comparing these taxonomies, the workloads are defined in a similar manner
but Rodriguez and Buyya expand upon resource usage in our taxonomy with
resource requests, limits and consumption estimation. They also expand upon
network and performance isolation, but we consider these an implementation
detail of the provider platform. The taxonomy presented in this paper more elab-
orately describes workload type, flexibility and scheduling strategy. The topics
of deployment modeling, data and actors are also not covered by them.

Finally Carrión [3] describes a taxonomy specifically catered to the Kuber-
netes orchestrator, and referencing scientific literature aiming to improve this
orchestrator. They separate performance from scheduling and application, how-
ever we consider performance metrics to be part of the scheduling process. They
also separate infrastructure and cluster, but for us the cluster is part of the envi-
ronment in which a workload runs. The taxonomy is also limited, for example
only few scheduling metrics are mentioned.

None of these taxonomies completely describe all aspects related to orches-
tration in converged data sharing and federated clouds and edges. The majority
concentrate on workload concepts, some of them also elaborate the scheduling
more deeply. There is no taxonomy that includes data or (multi) actor aspects, or
makes the bridge to the modeling of the application and infrastructure behaviour.
As a result, no complete taxonomy exists which covers all relevant aspects of the
orchestration, and that is why we propose our taxonomy. Some taxonomies cover
the same aspects using different terms, depending on their research question and
perspective. The taxonomy presented in this paper is created from the perspec-
tive of running in the cloud-edge continuum, therefore it uses terms from that
domain. Some aspects of our taxonomy are also elaborated further compared to
other taxonomies for the same reason.

4 Use Cases

The applicability of the proposed taxonomy for workload deployment orches-
tration on federated and adaptive cloud infrastructures is demonstrated and
assessed in this chapter by means of three types of use cases. As their scope
varies strongly, they are considered to be illustrative and representative for a
multitude of additional types of use cases for which the taxonomy can be used.

4.1 Local Access to and Processing of Sensitive Data

AI algorithms must be able to access data sources to be trained or deployed.
However, the data cannot always simply be shared with an external organisa-
tion that provides the algorithm, e.g. when the amount of data to be transferred

246 T. Albers et al.

is too large or too sensitive to share (due to confidentiality, ethical, privacy or
legal reasons). In such cases, the data must remain within the security domain
of its provider and only controlled access to the data may be allowed for a (dis-
tributed) AI algorithm. This is also referred to as “data visiting”. Data visiting
can be implemented by means of Privacy Enhancing Technologies (PETs), such
as secure Multi-Party Computation (MPC) [6] and Federated Learning (FL) [5].
PETs can be applied to train or deploy algorithms on data that is either horizon-
tally or vertically partitioned. In the former, the same type of data is provided
by different organisations. In the latter, different types of data applying to the
same “entity” are provided by different organisations.

For training over horizontally partitioned data, the use case of medical data
distributed over various hospitals can be used. Data on a particular illness, but
applying to different patients, is often spread over many hospitals. The dataset
at a particular hospital could be too small to successfully train a model. Feder-
ated Learning allows a ‘worker’ to compute a version of the FL model on local
data within the (security) domain of the hospital. Subsequently, the individually
trained models are combined to compute an aggregate model. Repeating this
process several times, the FL model is trained over the combined local datasets,
without raw data having been shared.

For training over vertically partitioned data, we can use the use case of the
emerging Smart Energy Systems. Due to an increase in renewable (distributed)
energy sources, energy grids increasingly encounter congestion. Insight into the
state of the energy grid is needed to improve the planning for congestion and
mitigate the effects thereof. Data from diverse devices, owned by households and
facilitated by third parties, can be used to get an insight into the state of the low-
voltage (LV) grid. However, this is sensitive data as it reveals consumer behaviour
patterns. Hence, data visiting could be used for LV grid state estimation. In
this case, models should be provided access to local household data. The model
weights are aggregated in the semi-global model of the FL framework to calculate
the overarching grid state, allowing the physical LV system to be monitored and
(re-)configured [5].

The taxonomy as proposed in this paper provides a good basis for identifying
and defining the main deployment orchestration aspects for both the horizontally
and vertically partitioned data. The usage of the taxonomy helped in this use case
to identify the choice on scheduling mechanism, the KPIs for data management
and requirements for the computational environment.

4.2 Varying Trust and Security Levels of Clouds

Data sharing and processing collaborations between organisations involving sen-
sitive data require policies and agreements on the actual processing in cloud
infrastructures that are owned and operated by external organisations. In this
case, deployment of workloads on specific clouds will depend on whether their
trust and security offerings comply with constraints as specified by the organi-
sation that deploys the workload, and the applicable legislation.

A Taxonomy for Workload Deployment Orch. in the Edge-Cloud Continuum 247

Hence, the trust and security constraints introduce restrictions on the deploy-
ment on cloud and edge environments. Traditionally, legal agreements are made
between the deploying organisation and the provider(s) of the cloud services
in combination with an auditing approach on conformance with the agree-
ments, rules, norms and standards. However, the more often that data collabo-
ration occurs in which data(sets) are transferred between various cloud service
providers, the more complex this (often manual) approach of contracting and
auditing becomes. New efforts on automated compliance as for example in Gaia-
X aim to solve the labor and overhead involved in this process [10]. Gaia-X
introduces the concept of labelling the trust and security levels of clouds, adher-
ing to the European values of data sovereignty. As such, cloud service providers
are expected to emerge with differentiation in trust and security offerings. In
such a diverse cloud landscape, the deployment orchestrator has to ensure that
the workload distribution over various clouds stays within the trust and security
constraints as prescribed by business rules and applicable legislation. Addition-
ally, the strategic multi-cloud perspective takes varying trust and security levels
into account in the workload deployment orchestration. Users contract multiple
cloud service providers with the ability to move workloads between them, to
become less dependent on a single cloud provider.

This use case relates to the Scheduling concept of the taxonomy, in which it
specifically addresses the security and trust aspects under policies. From a trust
and security perspective other concepts in the taxonomy can apply as well. For
instance, data classification may require that all data processing is performed
only by mandated parties. This relates to the Actors concept in the taxonomy.
Similarly, requirements on the availability of (processing) services applies to the
Environment concept in the taxonomy.

4.3 Non-reliable Availability of Cloud and Edge Infrastructures

The (availability of) individual cloud processing infrastructures can not always
be relied upon. A first use case applies to the emerging 5G network infrastruc-
tures with integrated edge and cloud computing service offerings. Applications
that rely on (live) access to processing capabilities at the edge of a telecommu-
nication network or in an interconnected remote cloud, face differences in avail-
ability of the network. In this case mobile edge computing (MEC) and cloud
locations might be available, but from the device in the field that requires the
processing capabilities it is (temporarily) not accessible. A workload might need
to be stopped, moved or placed into a different operating mode to ensure the
least impact of the signal-loss to the end-user. This type of self-adaptivity or
resilience of the processing infrastructure influences the deployment orchestra-
tion as it introduces variability within the orchestrated environment. In previous
research the conclusion was drawn that slicing within the 5G network cannot
ensure end-to-end low latency and availability guarantees alone [12], and edge
and redundancy planning of the deployment orchestrator is an important open
challenge to be addressed. Moreover, in the particular case of the mobile edge,
specific viewpoints are needed on offloading strategies.

248 T. Albers et al.

A second use case in this category applies to military mission contexts,
in which federations of tactical clouds aim at filling the gap between recent
advancements in sensing, processing, and storage capabilities for acquiring and
processing data and the still disadvantaged tactical networks interconnecting
such capabilities on the battlefield [1]. Workload deployment orchestration in
such an environment will fundamentally differ from those operating in civil-
ian enterprise clouds: they are not provided with abundant cloud processing
resources, they may be on the move (in aircraft, drones or battlefield vehicles),
may not have guaranteed power supplies, may have very limited and unreli-
able connectivity (in terms of bandwidth, latency and latency variation) and
may not have trustworthy availability (due to military adversarial activity and
resource mobility). Moreover, military mission partners must retain both auton-
omy and granular control over the policies that define what others can see and
do on ‘their’ cloud environments. Various NATO Research Task Groups (RTGs)
have explored the concept of a federation of tactical clouds in which mission
partners mutually expose their cloud resources through well-defined Application
Programming Interfaces (APIs) [1] and have quantified the performance of vari-
ous common-of-the-shelve and open-source container orchestration distributions
in military tactical networks [13]. This requires workload deployment orchestra-
tion across the edge-cloud continuum, for which the RTGs identified the following
major challenges: (1) Some edge nodes provide specialised resources that might
go offline quite frequently, although their workloads may be mission-critical. Typ-
ical examples are camera drones or free-floating ocean sensors; (2) Workloads
with high priority may preempt resources previously allocated to other work-
loads, for which a one-shot (“fire-and-forget”) deployment orchestration process
is not acceptable; (3) Mission partners do not typically equally trust each other,
and trust might change throughout the military operation. Hence, the deploy-
ment orchestrator must consider trust while scheduling workloads.

In these use cases multiple concepts from the taxonomy apply. Clearly, the
(non-) reliability of cloud infrastructures relates to the Environment concept,
and specifically to its availability branch. Moreover, the Actors concept applies
from the perspective of the multi stakeholder environments in the context of
these use cases. From Scheduling, the trust (and security) aspects are of major
relevance.

5 Future Directions

Based on the taxonomy as defined in Sect. 2 and the results of the deployment
thereof in the use cases as presented in Sect. 4, we have identified two connected
directions for future work. First of all, the execution of the use cases has triggered
several areas in which the taxonomy itself should be extended:

1. Strategic decentralisation, e.g. for autonomous swarming concepts to ensure
overall resilience [11].

2. Availability of secure enclaves in multi-cluster environments enabling confi-
dential computing scenarios.

A Taxonomy for Workload Deployment Orch. in the Edge-Cloud Continuum 249

3. Dynamic utilisation of available programmable (or configurable) hardware
elements, e.g., FPGA boards.

The three aspects above were identified either during the study or in the
evaluation process of the use cases. Though, in the analysis the three aspects were
not sufficiently mature or complete to be included in the taxonomy presented.

As a second angle of future work, this analysis demands a new design of
an open and modular software architecture that enables implementations of
a generic, re-usable, modular deployment orchestrator, where the various con-
cerns of the presented taxonomy can be implemented without creating a specific
orchestrator for each individual use case as was done in this study. In such an
architecture, openness is key to ensure that third parties can easily extend the
orchestrator to address aspects of the taxonomy that are important to them.

6 Conclusions

The primary objective of this paper was to provide a taxonomy for deployment
orchestration in a converged data sharing and federated cloud infrastructure,
and assess its usability against a set of illustrative and representative use cases.
A preliminary conclusion is that the proposed taxonomy for each of the use
cases proved its added value in terms of (1) efficiency in defining the context
and problem space in which an associated deployment orchestrator has to be
developed, and (2) identifying the boundary condition and scope limitations
in developing a generic deployment orchestrator being re-usable for multiple /
various use cases. Future work includes further validation of this taxonomy from
additional use cases and from development of a generic, modular and re-usable
implementation based on the taxonomy.

Acknowledgments. This paper is the result of the joint effort of several research and
innovation projects: the Dutch Centre-of-Excellence on Data Sharing and Cloud (CoE
DSC, https://coe-dsc.nl/), the EU project Big Data for Energy (BD4NRG, https://
www.bd4nrg.eu), and the NATO Research Task Group IST-193 ‘Edge Computing at
the Tactical Edge’. We would like to thank the sponsors of these initiatives for providing
us the opportunity to do this highly relevant and interesting research. Moreover, the
authors would like to thank Mr. G. Pingen and Mrs. A. Kosek (both former TNO
employees) for their valuable preliminary work forming the basis for this paper.

References

1. Bastiaansen, H., et al.: Federated control of distributed multi-partner cloud
resources for adaptive C2 in disadvantaged networks (2020). https://doi.org/10.
1109/MCOM.001.2000246

2. Bentaleb, O., Belloum, A.S.Z., Sebaa, A., El-Maouhab, A.: Containerization tech-
nologies: taxonomies, applications and challenges. J. Supercomput. 78(1), 1144–
1181 (2021). https://doi.org/10.1007/s11227-021-03914-1

https://coe-dsc.nl/
https://www.bd4nrg.eu
https://www.bd4nrg.eu
https://doi.org/10.1109/MCOM.001.2000246
https://doi.org/10.1109/MCOM.001.2000246
https://doi.org/10.1007/s11227-021-03914-1

250 T. Albers et al.

3. Carrión, C.: Kubernetes scheduling: taxonomy, ongoing issues and challenges. ACM
Comput. Surv. 55(7), 1–37 (2022). https://doi.org/10.1145/3539606

4. Casalicchio, E., Iannucci, S.: The state-of-the-art in container technologies: appli-
cation, orchestration and security. Concurr. Comput. Pract. Exp. 32, e5668 (2020).
https://doi.org/10.1002/cpe.5668

5. Causevic, S., Sharma, S., Ben Aziza, S., van der Veen, A., Lazovik, E.: LV grid
state estimation using local flexible assets: a federated learning approach. In: 2023
International Conference and Exposition on Energy Distribution (CIRED), pp. 1–4
(2023)

6. D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y.,
Bourka, A.: Privacy by design in big data: an overview of privacy enhancing tech-
nologies in the era of big data analytics. CoRR (2015). http://arxiv.org/abs/1512.
06000

7. Casalicchio, E.: Container Orchestration: A Survey, pp. 221–2035. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-92378-9_14

8. European Commission: A European strategy for data (2020). https://digital-
strategy.ec.europa.eu/en/policies/strategy-data

9. European Commission: European Data Governance Act (2022). https://digital-
strategy.ec.europa.eu/en/policies/data-governance-act

10. Gaia-X: Automated compliance - GAIA-X institute position paper (2022). https://
gaia-x.eu/publication/automated-compliance/

11. Juan Ferrer, A.: Next Steps for Ad-hoc Edge Cloud and Swarm Computing Real-
ization, pp. 189–195. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
23344-9_12

12. Ksentini, A., Frangoudis, P.A.: Toward slicing-enabled multi-access edge comput-
ing in 5G. IEEE Network 34(2), 99–105 (2020). https://doi.org/10.1109/MNET.
001.1900261

13. Kudla, T., Fogli, M., Webb, S., Pingen, G., Suri, N., Bastiaansen, H.: Quantifying
the performance of cloud-oriented container orchestrators on emulated tactical net-
works. IEEE Commun. Mag. 60, 74–80 (2022). https://doi.org/10.1109/MCOM.
003.00975

14. Mampage, A., Karunasekera, S., Buyya, R.: A holistic view on resource manage-
ment in serverless computing environments: taxonomy and future directions. ACM
Comput. Surv. 54(11s), 1–36 (2022). https://doi.org/10.1145/3510412

15. Nguyen, P.H., et al.: A systematic mapping study of deployment and orchestra-
tion approaches for IoT. In: IoTBDS, pp. 69–82 (2019). https://doi.org/10.5220/
0007675700690082

16. Rodriguez, M.A., Buyya, R.: Container-based cluster orchestration systems: a tax-
onomy and future directions. CoRR (2018). http://arxiv.org/abs/1807.06193

17. Tonella, P., Torchiano, M., Bois, B.D., Systa, T.: Empirical studies in reverse engi-
neering: state of the art and future trends. Empir. Software Eng. 12, 551–571
(2007). https://doi.org/10.1007/s10664-007-9037-5

18. Weerasiri, D., Barukh, M.C., Benatallah, B., Sheng, Q.Z., Ranjan, R.: A taxonomy
and survey of cloud resource orchestration techniques. ACM Comput. Surv. 50(2),
1–41 (2017). https://doi.org/10.1145/3054177

https://doi.org/10.1145/3539606
https://doi.org/10.1002/cpe.5668
http://arxiv.org/abs/1512.06000
http://arxiv.org/abs/1512.06000
https://doi.org/10.1007/978-3-319-92378-9_14
https://digital-strategy.ec.europa.eu/en/policies/strategy-data
https://digital-strategy.ec.europa.eu/en/policies/strategy-data
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://digital-strategy.ec.europa.eu/en/policies/data-governance-act
https://gaia-x.eu/publication/automated-compliance/
https://gaia-x.eu/publication/automated-compliance/
https://doi.org/10.1007/978-3-031-23344-9_12
https://doi.org/10.1007/978-3-031-23344-9_12
https://doi.org/10.1109/MNET.001.1900261
https://doi.org/10.1109/MNET.001.1900261
https://doi.org/10.1109/MCOM.003.00975
https://doi.org/10.1109/MCOM.003.00975
https://doi.org/10.1145/3510412
https://doi.org/10.5220/0007675700690082
https://doi.org/10.5220/0007675700690082
http://arxiv.org/abs/1807.06193
https://doi.org/10.1007/s10664-007-9037-5
https://doi.org/10.1145/3054177

Intent-Based AI-Enhanced Service
Orchestration for Application Deployment
and Execution in the Cloud Continuum

Efthymios Chondrogiannis1(B), Efstathios Karanastasis1, Vassiliki Andronikou1,
Adrian Spătaru2, Anastassios Nanos3, Aristotelis Kretsis4, and Panagiotis Kokkinos4

1 Innovation Acts LTD, Kolokotroni. 6, 1101 Nicosia, Cyprus
timchros@gmail.com

2 West University of Timisoara, Bd. Vasile Pârvan. 4, 300223 Timis,oara, Romania
adrian.spataru@e-uvt.ro

3 Nubificus LTD, 501 West One Peak 15 Cavendish Street, Sheffield, UK
ananos@nubificus.co.uk

4 Institute of Communication and Computer Systems, Iroon. Polytech. 9, 15773 Athens, Greece
{akretsis,kokkinop}@mail.ntua.gr

Abstract. Given the complexity of contemporary applications, the varying goals
and intents of their owners, and the availability of resources with fundamentally
different characteristics and capabilities, the optimal deployment and execution
of applications and their internal components is a rather challenging subject in
the Cloud Continuum era. This includes the selection and the configuration of the
resources to adequately cover the set technological and business requirements and
constraints from the side of both application owners and resource providers. The
aforementioned process is often and to a great extent, donemanually and hence not
optimally, with direct impact to the execution of an application and the usage or the
available resources. In this work, we present the approach followed for the design
and development of a Service Orchestrator equipped with AI techniques and the
underlying multi-layered abstraction model enabling its functionality. These com-
ponents were incorporated in a platform for infrastructure-agnostic deployment
of data-intensive applications and tested in real-life scenarios.

Keywords: Intent-based Application Deployment and Execution ·Machine
Learning Techniques · Abstraction Models · Service Orchestration · Edge
Computing · Cloud Continuum

1 Introduction

The complexity of contemporary applications that may come from different vertical
sectors, the diversity of the hardware and environment-related requirements, and the
varying goals and intents of the application owners make the deployment and execution
of applications and their internal components a rather challenging topic in the Cloud
Continuum (CC) era. Therefore, the selection and proper configuration of computing

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 251–262, 2023.
https://doi.org/10.1007/978-3-031-46235-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-46235-1_17

252 E. Chondrogiannis et al.

resources with fundamentally different characteristics and capabilities to adequately
cover the set technological and business requirements and constraints of applications
is a very complicated endeavour, which is often tackled, to a great extent, in a manual
manner, and hence not optimal. Beyond that, computing resource re-allocation, when
the application owner needs it to be changed, is difficult.

The layered architecture followed in the SERRANO project [1] simplifies this pro-
cess and makes intent-based service orchestration feasible. More precisely, the AI-
enhanced Service Orchestrator (AISO), which is the main component in the upper layer
of the SERRANO platform architecture, undertakes the translation of the application
owner’s intent to the appropriate resource requirements taking into account a large body
of available knowledge that may directly or indirectly come from the end users, leaving
the technical details regarding the proper selection and management of the available
resources to the lower levels of the platform and in particular, the Resource Orchestra-
tor (RO). The telemetry data produced by the resources are collected and managed by
another component named Central Telemetry Handler (CTH).

In thiswork, particular focus is given to theAISO,which serves as amediator between
the technical and business needs of the application owner, expressed as application
and service requirements, and the resource orchestration process. In order to cover its
purposes, innovative algorithms and AI techniques were developed and integrated with
the AISO so that it can satisfy the posed needs through the maximization of the benefits
gained from the use of the available resources. The approach followedwas applied for the
deployment and execution of data- and compute-intensive applications with satisfying
results.

2 Related Work and Background Knowledge

2.1 Intent-Based Service Orchestration

Intent-based description of application requirements enables users who wish to deploy
and execute an application in the Cloud Continuum (CC) to formally express in the
highest level of abstraction “what” should be done deployment- and execution-wise
rather than the technical details of “how” it should be done. Hence it facilitates the CC
orchestration components to automatically configure and use different resources so that
the user intentions are satisfied hiding the technical details of this process.

Rafiq A., et al. [2] presented a system for Intent-based Networking (IBN) for 5G
mobile networks. The system consists of three layers. The Application Layer is domi-
nated by the Intent-based Management System (IMS) that enables operators to define
the Quality of Service (QoS) in the form of contracts, which it accordingly translates
to the appropriate configurations for the Management Layer depending on the platform
selected (i.e., the TOSCA1 file for M-CORD2 and the appropriate JSON messages for

1 OASIS TOSCA, https://www.oasis-open.org/committees/tosca/.
2 O. N. Foundation, CORD platform, https://opennetworking.org/cord/.

https://www.oasis-open.org/committees/tosca/
https://opennetworking.org/cord/

Intent-Based AI-Enhanced Service Orchestration for Application 253

ETSI-OSM3). The Physical Layer encompasses multiple Virtualized Networking Func-
tions (VNF) that were developed using the OpenAirInterface (OAI)4 Evolved Packet
Core (EPC) and Simulator (SIM) components.

Intent-based Cloud Services for Security Applications (IBCS) [3] is a system that
enables security service providers and security service consumers to setup appropriate
security policies without any security expert being involved in this process. The security
service consumer initially expresses the intent to use the desired security policy in an
abstract way (i.e., high level security policy). The IBCS then translates the high-level
security policy to a concrete low-level one, so that it can be accordingly used for detecting
the appropriate Network Security Function (NSF) from those registered, based on the
capabilities of each one of them. Finally, the IBCS creates an instance of the selected
NSF by also delivering the translated security policy to the NSF that will be responsible
for the particular policy enforcement.

Wu C., et al. [4] presented an Intent-based CloudManagement framework for bridg-
ing the gap between the cloud users that focus on the “service-level” requirements (e.g.,
number of requests per second) and the cloud providers that need to know the particular
cloud resources being necessary to meet the performance requirements (e.g., number of
vCPUs, size of vMemory). For this purpose, Logs about the performance are collected
from the cloud environment and accordingly used for training regression models. The
ML models are then used in order to find potential resource configurations (from the
available/possible ones) so that the cloud user performance intent is satisfied.

The aforementioned systems/frameworks presume that the application has been
already developed and can be deployed and executed in a computer environment on
condition that the appropriate configuration takes place. In case that particular hardware
accelerators such as GPUs and FPGAs should be used on demand by an application
(or some parts of it) so that the user needs are covered, additional programming effort
is often required [5]. Moreover, the automatic deployment and (re)configuration of the
internal components of an application in the CC is a quite complicated process when no
pre-defined Virtual Machine (VM) or container images are used.

The Aeolus model [6] enables users to describe several component characteristics
as well as their interface at different states of the configuration and deployment process.
Hence, it facilitates the synthesis of an application by specifying a desirable state and fol-
lowing a process/path to reach it. This problem is undecidable for the full Aeolus model,
but there are fragments of the Aeolus model that make this problem decidable. Lascu
T.A. et al. [7] presented an algorithm to solve the deployment problem when capacity
constraints and conflicts are ignored. This algorithm initially computes the reachable
states, which are then used for constructing an abstract plan with the type of compo-
nents needed and finally the concrete one. Georgievski I. et al. [8] applied Hierarchical
Task Network (HTN) planning to solve the problem of composing applications ready
for deployment in the cloud infrastructure. Bravetti M. et al. [9] used a simpler model
for the description of microservices according to which a microservice can be in two
different states, i.e., created and bound/unbound. Based on this model, the automated
deployment of microservices can be algorithmically treated.

3 ETSI-hosted, Open Source MANO software stack, https://osm.etsi.org/.
4 OpenAirInterface (OAI), https://openairinterface.org/.

https://osm.etsi.org/
https://openairinterface.org/

254 E. Chondrogiannis et al.

2.2 Machine Learning and Data Mining Techniques

Machine Learning (ML) and Data Mining (DM) techniques enable software agents to
learn from data, and model complex systems behaviour. These techniques are often
organized into two broad categories, i.e., supervised and unsupervised (e.g., clustering
methods), depending on their necessity for labelled data.

There are several supervised ML techniques including but not limited to Lin-
ear/Logistic Regression (i.e., special cases of Generalized Linear Models) and Gaussian
Discrimination Analysis (GDA) Models (i.e., a particular type of Generative Learning
Algorithms). Bayesian Networks [10] are probabilistic graph network that representing
variables and the relations among them; with the simplest one of such networks being
the Naïve Bayes Network. Decision Trees [11] are tree-like structures that can be used
for detecting the category that data belongs to, after several decisions that are made at
each node. Their performance can be significantly improved with the “combination” of
several Decision Trees (aka Random Forest). Support Vector Machine (SVM) [12] is a
ML technique that intends to develop a hyperplane that separates the data (i.e., maximize
their distance from the hyperplane) based on the minimal classification risk. Hence, it is
ideal for binary classification problems and, in combination with kernel methods, it can
efficiently deal with those cases where the data are not linearly separated.

Clustering methods [13] intend to find patterns in highly dimensional data, with
the most widely known methods being hierarchical clustering (i.e., a particular case of
connectivity models) and K-means clustering (i.e., a particular case of centroid models).
Density models such as DBSCAN [14], group the data points in such way that their
outcome is dense and connected regions. Frequent Pattern Mining techniques intend
to discover previously unknown patterns or association rules from the data. The FP-
Growth algorithm [15] creates a compact representation of the transaction data recorded
in a relational database in the form of a tree that facilitates detection of the frequent
patterns (FPs), and it is much more resource-efficient than an Apriori algorithm [16].
The FPs detected can be then used for generating association rules.

Artificial Neural Networks (NNs) consist of several interconnected artificial neurons
that utilize the information gained from the nodes of the previous layer for the classi-
fication of input data. They may contain one or more hidden layers (aka Deep NNs or
Deep Learning (DL) networks) and they can efficiently deal with high-dimensional data
and discover complex patterns or hidden correlations among them. Convolutional NNs
(CNNs) [17] are a particular type ofDeep Feed-ForwardNNs. They typically have sparse
interactions and hence the units existing in the deeper layers indirectly interact with most
of the units residing in the previous layers. Recurrent NNs (RNNs) are a special type of
NN that belong to the aforementioned category. They have been designed so that they
have memory (i.e., their behaviour depends on their past experience). Particular types of
RNNs are the Long Short-TermMemory (LSTM) and the Gated Recurrent Units (GRU).

The aforementioned techniques are of great importance for the design of the back-
ground mechanisms of the AISO so that it can benefit from the data being collected and
extract useful patterns that can accordingly drive the orchestration process. It should
be noted that the ML/DM techniques may also be an important component of the
applications themselves and hence proper configuration and usage of the available

Intent-Based AI-Enhanced Service Orchestration for Application 255

resources is necessary so that the application can benefit from their capabilities and
the set application-level requirements/goals/intents are satisfied.

3 Approach Followed

3.1 Overview

Successful deployment of applications and efficient usage of computer resources is a
challenging task that depends on several parameters, including but not limited to the
capabilities and available capacities of the set of Cloud Continuum (CC) resources that
are linked at each given time with the platform (e.g., CPU power of edge devices), the
particular needs of each application (e.g., data storage volume), the goals or intents of
the users and the priority assigned to each one of them.

For the description of each application (i.e., provision of application-specific meta-
data), the Application Model (AM) has been developed with the intention to capture
the overall goal of the application provider (i.e., intent) in an abstract infrastructure-
independent manner as well as the particular application requirements and/or prerequi-
sites that are necessary for the deployment and proper execution of the internal applica-
tion components. The metadata provided via this model need to be then expressed in a
more concrete way so that they can be used by the other components of the platform for
the actual deployment and execution of the application services. For this purpose, the
Resource Model (RM) was developed, which contains all those parameters being neces-
sary for the deployment of the given application/services to the appropriate infrastructure
by the Resource Orchestrator. The data collected from the deployment and execution of
the application in the platform can be expressed using the elements of another model
developed, namely the Telemetry Data Model (TM).

For the automatic deployment of each application based on the given application
requirements and user’s intents, a framework was developed that is capable of deal-
ing with the complicated relations among these models using AI techniques. The AI-
enhanced Service Orchestrator (AISO) undertakes the first part of the orchestration
process and cooperates with the Resource Orchestrator (RO) for the proper deployment
of applications in the infrastructure. For this purpose, severalMappingRules (MRs) have
been specified and are employed by the AISO in order to translate the initial abstract
parameters to an intermediate or lower level so that they can be finally used for the
application deployment, execution and monitoring by the RO. Additional MRs have
been defined so that that telemetry data captured by the Central Telemetry Handler
(CTH) can be linked with the relevant AM entities, and hence the extent to which the
initial user requirements have been satisfied can be measured.

3.2 Abstraction Models

Application Model (AM). The AM provides the terminology required for the formal
description of a software application from a user’s point of view, including the particular
requirements that the application should satisfy as well as the users’ goals and/or intents.
The design of this model was driven by, but not limited to, applications being part of

256 E. Chondrogiannis et al.

particular use cases that belong to the broad domains of Security, Finance and Manu-
facturing. Also, the model (part of which is presented in Table 1) follows a structured
format in multiple levels, which considerably aids the translation process. Regarding the
model parameter values, in many cases the value is a (plain) number or an amount (a
number followed by a unit of measurement, such as the storage volume). In some other
cases, the value can be Boolean (e.g., whether GPU usage is preferable or not), or even
a term (e.g., the data encryption algorithm to be used).

Table 1. Part of the Application Model.

Category Sub-category Parameters

Usage Demand Number of Users Total Number of Concurrent Users

Performance Execution Total Execution Time

Hardware Acceleration GPU / FPGA

Data Storage Volume Volume Size

Secure Storage Data Encryption Algorithm

Erasure Coding Schema

Location Geographical Location

Proximity to End User

Network Network Capacity Upload/Download Bandwidth

Network Latency

Message Encryption Message Encryption Algorithm

Energy Total Energy Consumption

Cost Overall Cost

For the formal expression of the particular application requirements and user intent, a
model-based approachwas followed, according towhich several constraints are specified
based on the parameters included in the AM and the possible values of each one of
them (i.e., the desired set or range of values that the value of the respective parameter
should belong to). For each constraint specified by the end user, additional data can
be given, such as the relevant importance of a constraint in comparison with the other
ones specified. The users can also define whether these constraints apply to the whole
application or some of their internal components, including the relation among them,
taking into account the approach followed by the OpenWDL5.

Apart from the aforementioned AM constraints, additional or different data may be
required, including lower-level technical details about the application’s internal compo-
nents, the interactions among them and the endpoints of external services being used
(e.g., database name, port, etc.), which can be directly consumed by the RO compo-
nent for deployment or other purposes. This information (aka Deployment Description)

5 OpenWDL, Open Workflow Description Language (WDL), https://openwdl.org/.

https://openwdl.org/

Intent-Based AI-Enhanced Service Orchestration for Application 257

should be provided by the application owner and would contain parameters that cannot
be inferred from the given constraints.

Resource Model (RM). The RM identifies both hardware attributes and definitions for
interacting with the respective entity. Figure 1 presents the class diagram of a small part
of the RM along with the attributes of the respective entities.

Fig. 1. Part of the Resource Model. The upper part of this figure is the class diagram whereas at
the bottom of this figure exist the attributes of different entities.

Standalone resources are resources that have computational capabilities and can be
accessed externally via some interface (e.g. SSH,REST) regarding the telemetry data col-
lection (tele), resource configuration (conf) and execution (exec). Standalone resources
encompass both hardware and software resources. The base hardware resource type is
modelled using the concept of a Node. A Node can represent an Edge Device, a Virtual
Machine, or even Bare Metal servers and it may have one or more Attached Resources
such as GPUs, FPGAs, SmartNICs (smart network interface cards) or DPUs (data pro-
cessing units). Software resources aggregate hardware resources and offer functional
facilities on top. A Storage Service handles multiple Storage Locations, each having
a cost, and a cost unit, and estimated storage amount, depending on where the data is
stored (cloud, edge) and reliability requirements. Additionally, a Storage Location can
provide data protection using erasure coding. An Execution Service aggregates hard-
ware resources and may use different deployment models to execute applications on
these nodes.

Telemetry Data Model (TM). The TM captures the infrastructure runtime measure-
ments of the various components that comprise the platform. The data being collected
are organized in five broad categories, i.e., compute, memory, disk, network and hard-
ware info. The data of each one were further organized into sub-categories to adequately
describe the state of the hardware and software components available for allocation and

258 E. Chondrogiannis et al.

usage (e.g., CPU and filesystem statistics). The data gathered were also linked with a
timestamp and stored in a time series database that provides querying capabilities for a
specific time range.

4 Software Components and Background Mechanisms

4.1 AI-Enhanced Service Orchestration

The AISO is responsible for the translation of the parameters specified by the end user
using the elements of theAM to the appropriate constraints using the elements of theRM.
The input of the AISO is a JSON File that encompasses several constraints regarding
the application and its execution (including user’s intents and other application and
infrastructure-related parameters of importance). The output of the AISO is another
JSON File with the potential deployment scenarios (expressed based on the elements of
the RM) that could take place, which include the medium/low-level restrictions that the
respective resources should satisfy.

Fig. 2. The internal components of the AI-enhanced Service Orchestrator incl. Input/output.

The main component of the AISO (Fig. 2) is the Application Data Manager, which
is responsible to handle the application metadata provided by the end user regarding the
execution of an application as well as the Telemetry Data collected by the CTH. For this
purpose, it internally uses two different components. The first component (Translation
Mechanism) uses the MRs specified (analytically described in the following subsection)
for making the appropriate decisions regarding the deployment scenarios that can take
place and translating the application / component (aka microservice) parameters to the
appropriate resource constraints. The second component (Deployment Scenarios Prepa-
ration) further processes the output of the previous component taking into account the
internal components of each application and the interactions among them.

The RO then selects the appropriate deployment scenario, taking into account the
restrictions provided and the available computer resources linked with the platform and
accordingly “injects” the additional constraints in the deployment descriptor YAML
file before its usage. When the deployment phase has been completed, the application is

Intent-Based AI-Enhanced Service Orchestration for Application 259

available to the respective users and hence several tests can take place. The data collected
by the CTH regarding the execution of each application are expressed using the elements
of the TM and stored in a time series database (i.e., Prometheus6) so that they can be
further analysed (either online or offline) for improving the decisions made by the AISO
during the translation process.

4.2 Background Mechanisms

Mapping Rules (MRs). The functionality provided by the AISO depends on the MRs
specified that express the correspondence among the elements of the AM with the ones
specified in the RM and TM. Eachmapping rule has several parameters including but not
limited to source and target elements along with the process that should be followed (aka
transformation) for moving from one data representation to the other one. Apart from the
aforementioned parameters, each MR includes additional data, such as the prerequisites
that should be fulfilled so that this MR can be used, and metadata, such as the origin of
the MR, its direction of usage (i.e., for “moving” from source to target elements), etc.

TheMRswere specified eithermanually (in close collaborationwith domain experts)
or automatically (through the analysis of collected telemetry data), and can be organized
in three broad categories. The first category contains the MRs among a subset of AM
and RM parameters. For instance, when the aim is to avoid high network utilisation
or to achieve low response latency, it is preferable to deploy an application to an edge
device (or fog node) rather than to a cloud provider [18]. The second category covers
the mapping of a subset of TM parameters with the corresponding ones in the AM. For
example, the total execution time is highly relevant to the execution speed-up measured.
The third category encompasses the MRs specified for capturing the complex relations
among RM and TM parameters and it was mainly driven by the collected telemetry data
and the utilization of ML techniques. In particular, several ML models were developed
(using traditional ML techniques such as Linear/Logistic Regression) so that they could
best predict the value of different TM parameters (e.g., energy consumption), based on
a particular resource configuration.

TranslationMechanism. TheAISOexamines the data provided by the end user regard-
ing the particular application requirements and user intent along with the source and tar-
get elements of each MR for detecting the ones that can be directly or indirectly applied
to the given AM constraints. In case that all source elements of a MR are available (i.e.,
a constraint has been specified regarding the appropriate set or range of their values),
a MR can be directly applied for the translation of the source parameters to the appro-
priate target parameters. For instance, when low data transfer latency is necessary, the
system will propose the deployment of the application in an Edge Device (i.e., the one
being close to the location where the data are being produced) rather than in a cloud
provider. On the other hand, when all target elements are available, the AISO exam-
ines possible resource configurations so that the given AM requirements are satisfied.
More precisely, for each possible configuration it uses the predefined ML models for
detecting/predicting the expected value of a TM parameter and hence selecting the ones

6 Prometheus, https://prometheus.io/.

https://prometheus.io/

260 E. Chondrogiannis et al.

the outcome of which is compatible with the given AM constraints, taking into account
the MRs specified among the parameters of the TM and AM. For instance, when a par-
ticular task should be completed in a limited amount of time, the system uses the ML
models for predicting the expected amount of time (or a relevant parameter that can be
directly linked with this one, such as execution speed-up factor) for different type of
resources and proposes the usage of those resources that should produce an outcome
that is compliant with the initial requirement.

The MRs detected through the aforementioned process are accordingly applied one
after the other, taking into account the priority assigned to the respective AM constraints.
During this process, more than one deployment scenario (branches) can be produced,
even for the same type of resources, when the same application constraints can be
expressed in more than one ways to resource constraints. In case of a conflict (e.g., when
there are contradictions in the generated constraints that arose from the application of
different MRs) the user is informed.

5 Usage and Discussion

5.1 Example of Usage

The system developed and in particular the AISO has been used for the deployment
of a compute- and data- intensive application in the manufacturing sector. The owner’s
intent for the application was instant response to events coming from sensors while
keeping energy consumption as low as possible. The application was containerised and
the Kubernetes7 deployment descriptor YAML file was prepared in advance, so that it
could be accordingly used for resource allocation purposes.

In this particular example, theAISO suggested the preferred usage of an EdgeDevice
(rather than proposing, e.g., deployment to the cloud) as well as the device’s GPU, since
the expected energy consumption of this configurations was lower than the expected one
when only using the device’s CPU, according to the ML model(s) developed for this
application. The RO accordingly used the generated resource constraints for revising
the given deployment descriptor (e.g., node CPU/GPU cores requirement) which was
then used for the actual deployment of the application. The data that were accordingly
collected using the CTH indicated that the deployment that took place was aligned with
the application owner’s needs.

5.2 Discussion

In this work, particular focus was given to application deployment and especially the
selection of the appropriate resources being necessary so that certain requirements are
satisfied. For this purpose, the establishment of direct links among the parameters of
the TM and AM was necessary, so that these relations can be accordingly exploited for
identifying the appropriate resources being required each time. Alternatively or even
additionally, the application owners can be included in this process, by providing their

7 Kubernetes, https://kubernetes.io/.

https://kubernetes.io/

Intent-Based AI-Enhanced Service Orchestration for Application 261

feedback regarding the translation process that tookplace, in order to establish or improve
the relations among requirements and resource suggestion. Regarding the ML models
developed, traditional ML techniques were used for capturing the relation between the
resource configuration and the relevant telemetry data. However, in some other cases,
the correspondence among themmay bemore complicated and hence DLmethods could
better model the relations.

The allocation of the appropriate type and resource quantities for the deployment
and execution of an application was done by means of a deployment descriptor. In
this work, since Kubernetes was internally used for Resource Orchestration purposes,
the technical details regarding the deployment of each application were expressed in a
Kubernetes-specific YAML file using the Kubernetes YAMLGenerator8. An alternative
GUI could be used for this purpose, such as the one offered by Alien4Cloud9 (A4C).
A4C is compatible with TOSCA [19] (i.e., a standard modelling specification language
for describing applications that reside on a cloud computing platform) and supports the
Kubernetes topology through the usage of a plugin.

6 Conclusion

Efficient usage of computer resources is a challenging task taking into account the
diversity of applications in terms of their computation needs and the particular goals
of their owners. For this purpose, three conceptual models were developed in order
to organize and correlate the data that is used by the different software components
responsible for undertaking the intent-driven application deployment and execution. The
AISO that was developed facilitates the deployment and execution of each application
taking into account the data provided by the owner and their impact to the particular
resource requirements, through the usage of several ML-model-driven mapping rules.
The valuable contribution of the AISO for the deployment and execution of applications
in accordance with the set requirements and intent, including, but not limited to, usage
of particular types of computing resources, response latency and energy consumption,
was demonstrated via the example presented in this paper.

Acknowledgement. This work has been supported by the SERRANO EU project and partially
funded by the EU’s Horizon 2020 research and innovation programme under grant agreement
101017168. This paper expresses the opinions of the authors and not necessarily those of the
European Commission. The European Commission is not liable for any use that may be made of
the information contained in this paper.

References

1. Kretsis, A., et al.: SERRANO: transparent application deployment in a secure, accelerated and
cognitive cloud continuum. In: Proceedings of the IEEE MeditCom Conference, pp. 55–60
(2021)

8 Kubernetes YAML Generator, https://k8syaml.com/.
9 Alien 4 Cloud, https://alien4cloud.github.io/index.html.

https://k8syaml.com/
https://alien4cloud.github.io/index.html

262 E. Chondrogiannis et al.

2. Rafiq, A., et al.: Intent-based end-to-end network service orchestration system for multi-
platforms. Sustainability 12(7), 2782 (2020)

3. Kim, J.T., et al.: IBCS: intent-based cloud services for security applications. IEEE Commun.
Mag. 58(4), 45–51 (2020)

4. Wu, C., et al.: Intent-driven cloud resource design framework to meet cloud performance
requirements and its application to a cloud-sensor system. J. Cloud Comput. 10(1), 1–22
(2021)

5. Che, S., et al: Accelerating compute-intensive applications with GPUs and FPGAs. In:
Proceedings of the IEEE 2008 SASP Symposium, pp. 101–107 (2008)

6. Di Cosmo, R., et al.: Aeolus: a component model for the cloud. Inf. Comput. 239, 100–121
(2014)

7. Lascu, T.A., Jacopo M., Gianluigi Z.: A planning tool supporting the deployment of cloud
applications. In: Proceedings of the 2013 IEEE 25th ICTAI Conference, pp, 213–220 (2013)

8. Georgievski, I., et al.: Cloud ready applications composed via HTN planning. 2017. In:
Proceedings of the IEEE 10th SOCA Conference, pp. 81–89 (2017)

9. Bravetti, M., et al.: Optimal and automated deployment for microservices. In Proceedings of
the 22nd FASE Conference, pp. 351–368 (2019)

10. Ben-Gal, I.: Bayesian networks. In: Encyclopaedia of Statistics in Quality and Reliability, 1
(2008)

11. Ali, J., et al.: Random forests and decision trees. Int. J. Comput. Sci. Issues 9(5), 272 (2012)
12. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)
13. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666

(2010)
14. Schubert, E., et al.: DBSCAN revisited, revisited: why and how you should (still) use

DBSCAN. ACM Trans. Database Syst. 42(3), 1–21 (2017)
15. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM

SIGMOD Rec. 29(2), 1–12 (2000)
16. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Proceedings of the

20th VLDB Conference, pp. 487–499 (1994)
17. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377

(2018)
18. Cao, K., et al.: An overview on edge computing research. IEEE access 8, 85714–85728 (2020)
19. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated deployment

and management of cloud applications. In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.)
Advanced Web Services, pp. 527–549. Springer, New York (2014). https://doi.org/10.1007/
978-1-4614-7535-4_22

https://doi.org/10.1007/978-1-4614-7535-4_22

Optimizing the Cost-Performance Ratio
of FaaS Deployments

Richard Patsch(B) and Karl Michael Göschka

UAS Technikum Wien, Vienna, Austria
{richard.patsch,karl.goeschka}@technikum-wien.at

Abstract. Autoscaling serverless architectures utilizing Function as a
Service (FaaS) is an established model. While there is virtually no limit
to scalability in theory, in practice, a trade-off between price and per-
formance determines the cost-efficient scalability of cloud deployments.
Finding the correct specifications becomes even harder when the compu-
tational demands depend highly on the functions’ inputs. Consequently,
a single configuration is often not cost-efficient enough.

To solve this problem, our paper proposes a deployment model
for multiple specifications to cover inputs with differing computational
demands. By defining categories for the functions’ inputs, requests can be
routed to particular deployments to increase the overall cost-performance
ratio. Applied filters to the functions’ triggers alleviate the complexity of
multiple deployments, and deployments can actively select inputs within
their assigned category.

We evaluated our approach with multiple use cases and programming
languages on Amazon Web Services (AWS) and Azure. Multiple deploy-
ments can generally be justified, if cost is higher for shorter duration.
The efficiency of our approach depends on (i) the assignment of correct
categories, (ii) the number of requests in each category, and (iii) the
configuration granularity of the cloud service provider. While different
languages do not influence the effectiveness of this approach, it is hin-
dered by limited configuration possibilities on Azure. Thus, it is easier
to find the best cost-performance ratio on AWS.

Keywords: function as a service · cloud computing · resource
efficiency

1 Introduction

Function as a Service (FaaS) is a cloud computing service model which provides
a containerized environment to execute stateless functions. Its utilization is often
mentioned in combination with a serverless architecture. Serverless computing

This work has been supported by the Doctoral College Resilient Embedded Systems,
which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum
Wien.

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 263–275, 2023.
https://doi.org/10.1007/978-3-031-46235-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_18&domain=pdf
http://orcid.org/0000-0003-4371-4129
http://orcid.org/0000-0001-6419-2732
https://doi.org/10.1007/978-3-031-46235-1_18

264 R. Patsch and K. M. Göschka

offers simple deployment models, fine-grained scaling opportunities with linear
cost-to-resource pricing, concurrent invocations, and seamless integrations with
other cloud computing services [11]. Use cases for serverless computing range
from simple checks to see whether a website is down and working up to more com-
plex use cases such as Deep Learning [8], Federated Learning [13], Distributed
Machine Learning [16], Data Analytics [9], Compensation of Peak-Traffic [14],
High Energy Physics Distributed Analysis [10], scientific computing [15] and
many more.

Autonomously provisioning resources in the cloud to deal with peak work-
loads and deallocate them afterward reduces cost. Therefore, the concept of
autoscaling gained immense popularity within the cloud computing continuum
[12]. FaaS is autoscaling by design since resources are only allocated and pro-
visioned if needed. The compatibility and effort to switch to FaaS also depend
on how independent concurrently invocated functions work and whether they
communicate with each other [7]. Offloading computations on a method level,
like in FaaS, usually comes with increased overhead and complexity in terms of
synchronization [17].

Today, Cloud Computing always involves a trade-off between price and
performance of provisioned resources. Another consideration is how long the
resources will be provisioned. Thus, also the point in time when the deployment
or setup should be completed. In the grand scheme of things, ideally, a com-
plex software application can allocate the resources it needs on its own to han-
dle current workload caused by users of the system. This would then increase
the dynamic of the already existing PayPerUse concept that Cloud Comput-
ing Providers offer. Depending on response time requirements, deployment of
such resources may become a runtime decision. The first step on this journey
is to gather the optimal specifications for the application or the partition of an
application that is being outsourced to the cloud, and provision the most ideal
resources for given specifications afterward. There is a plethora of offerings, rang-
ing from provisioning whole virtual computers with different levels of flexibility
and complexity to deploying modular pieces of code in FaaS. As computational
requirements for different inputs may differ, having one single deployment for all
inputs is potentially inefficient. To further improve the cost-performance ratio
of a deployed FaaS function, this paper proposes differential routing to multiple
deployments with different configurations.

In case of uncertainty about specifications, some researchers [14] will either
adopt the maximum configuration to reduce the possibility of running into lim-
itations in that regard or optimize it for certain use cases and inputs. However,
this may needlessly increase the total cost, leading to wrong assumptions about
the cost comparison between FaaS and Infrastructure as a Service (IaaS).

Finding the right specifications for the executing FaaS environment is crucial
to the cost efficiency of the hosted function. Eismann et al. already attempted
to do so by proposing Sizeless [4]. They used a multitarget regression model

Optimizing the Cost-Performance Ratio of FaaS Deployments 265

capable of predicting the execution time of a serverless function for all memory
sizes based on monitoring data for a single memory size. Several tools exist
to find the optimal specification for a given input exhaustively, but our concept
deals with different optima for different inputs instead of looking for one optimal
configuration across all possible inputs.

The key contribution of this paper is to fill this gap by proposing input-
based specification selection in FaaS deployments. Having the same function
running with multiple specifications can increase the overall cost efficiency and
reduce the cost of the deployment. Sharing resources across cloned functions
reduces the additional cost to a minimum. By delineating input ranges for the
corresponding optimally dimensioned FaaS instances, the correct FaaS instance
is assigned automatically and alleviates the burden of dealing with the selection
of the right function.

Methodology: The chosen methodology for this research is Design Science
Research. Through an iterative creation of artifacts, new knowledge is generated
and written down [2] to acquire new insights on this subject.

The emulations were executed on AWS and Azure to cover different pricing
models and to rate the efficiency of this approach under different circumstances.
Since AWS and Google Cloud have a very similar pricing model, only AWS
was chosen. After removing the top and bottom 2.5%, the average was used
for all figures and comparisons. All data, implementations, measurements, and
calculations used in this paper are publicly available on Github1 for verification.

Overview: Section 2 will present the main contributions of this paper and
describe the research questions. Section 3 covers related work, while Sect. 4 elabo-
rates on the key ideas of the proposed approach. An exhaustive evaluation based
on numerous proof-of-concept implementations and measurements is found in
Sect. 5. Finally, Sect. 6 summarizes and concludes the findings incurred.

2 Contribution

This paper proposes a FaaS deployment design that deploys a function mul-
tiple times with different computational specifications. This approach aims to
improve the cost-to-performance ratio by assigning different input categories to
differently configured FaaS deployments. Although FaaS instances are limited in
terms of configurations, it can still be profitable to have several configurations
hosted, depending on the ratio of function invocations with inputs with low com-
putational demands to those with high computational demands. To conceal the
fact that multiple deployments exist, additional infrastructure and functionality
of Cloud Service Providers (CSP) are used; i.e., the function itself chooses its
input based on defined ranges or categories for respective deployment configura-
tions. This is achieved either by applying filters to the functions or by leveraging

1 https://github.com/richardpatsch/OptimizingCostPerformanceRatioOfFaasDeploy
ments.

https://github.com/richardpatsch/OptimizingCostPerformanceRatioOfFaasDeployments
https://github.com/richardpatsch/OptimizingCostPerformanceRatioOfFaasDeployments

266 R. Patsch and K. M. Göschka

a workflow service that passes the state. We evaluate our contribution based on
the following research questions (RQs):

– RQ1: Does it pay off to follow the proposed design?
– RQ2: Which scenarios favor the efficiency of this approach?
– RQ3: Are there significant differences between AWS and Azure when this

model is applied?

3 Related Work

Son et al. propose Splice, an automatic framework for the cost- and performance-
aware blending of IaaS and FaaS [14] to reduce Service Level Objective viola-
tions. To achieve this, Lambda functions based on annotations within the original
source code and a compiler-driven approach are implemented. The configuration
of deployed Lambda functions, however, is always set to maximum. While Splice
also focuses on the cost-performance ratio, the resulting *aaS executables do not
consider their input parameters for an even more efficient configuration. Elagmal
et al. optimize costs through Function Fusion and Placement [6]. They proposed
an algorithm to explore different solutions and reduce the price while remain-
ing under a certain latency threshold, which also considers the state transition
cost. The said cost is charged when the state has to be passed between multi-
ple consecutive serverless functions. While they consider different configurations
for each function before analyzing the potential efficiency of Function Fusion-
ing, only one configuration is ultimately selected. Software-as-a-Service (SaaS)
offerings such as Dashbird [3] allow one to define policies and scale an observed
Lambda function up or down, depending on the set policy and the defined goal
(execution time, memory usage, etc.).

A close competitor to FaaS is dynamic microservice allocation [1]. In contrast
to monolithic applications, which are usually much harder to scale up or down,
the deployment time and complexity of microservices are lower. The scaling
can, therefore, occur at a higher granularity. FaaS, on the other hand, is even
more fine-grained, since it deploys single functions instead of whole services.
Although one service or a greater set of functions can be deployed into a single
FaaS container, it contradicts the concept of a single modular piece of code, for
which FaaS was originally designed. Furthermore, the increased level of scala-
bility due to the offloading at the method level comes at the cost of potentially
having to synchronize responses afterwards. Like the studies mentioned above,
the dynamic allocation of microservices also does not consider different computa-
tional demands for different inputs. This way of improving the cost-performance
ratio seems to be a novel approach.

4 Input Based Deployments

The main idea of this concept is to deploy multiple FaaS configurations for the
same function, thus improving the overall cost-performance ratio. Naturally, the

Optimizing the Cost-Performance Ratio of FaaS Deployments 267

function itself is the fundamental part of this concept. How the resource require-
ments of a function scale with one input parameter, or with the combination
of multiple input parameters, is key. This relation determines the categories
and attributes based on which inputs are assigned to their corresponding FaaS
deployments.

While the ability of a function and its libraries to fully leverage resources
is crucial to its performance; it also has to be factored in how different CSP’s
assign computational resources to your deployment. Thus, the optimal solution
largely depends on the choice of the CSP, but also on the main objective of a
use case. The metrics to decide on the best configuration are duration and price
billed. As long as a better configuration provides a better performance, every
additional price can be justified. The same argument is valid when it comes
to the price. In most cases, however, both duration and price are taken into
account when making a decision. Finding the most suitable configuration for a
function is a process that ideally every FaaS deployment goes through to improve
performance and potentially reduce cost.

Uniqueness: The proposed concept goes one step further and assigns different
inputs to different deployments. When the base configuration is high, further
deployments for inputs with lower computational demands will not increase per-
formance, but will reduce costs in exchange for additional run-time duration.
This trade-off can be advantageous when a certain duration has to be met and
when a lower configuration is sufficient for different inputs. This reduces cost
while maintaining the same quality of service. When the base configuration is
low, additional deployments with more capacity will only reduce cost if the initial
determination of the base configuration has not been made judiciously. However,
it will increase the performance for inputs with higher computational demands.
The prerequisite of this endeavor is understanding the function deployed to cor-
rectly categorize inputs and access to the final metrics that lead to correct deploy-
ments. In this paper, it will be assumed that the categorization has already been
performed. This concept only investigates the different categories to which the
inputs of the functions were assigned before. The easiest to determine and prob-
ably most efficient use cases for this approach are when certain duration thresh-
olds have to be met for all inputs and faster executions are not advantageous. In
that case, the configuration for every category or classification can be selected
by looking at the duration of different inputs.

As depicted in Fig. 1, this approach creates additional allocated resources
and therefore potentially increases the effort of developers or users, since they
have to choose between available deployments. To alleviate the complexity of
dealing with multiple deployments, the deployment chooses its input by itself,
by applying a filter that is aligned with the categorizations of input classes.
However, this luxury comes at the cost of another provisioned resource. This
may be a queue, an API gateway, or file storage.

268 R. Patsch and K. M. Göschka

f(x)

fil
te

r 2

deployment 2
Output

(Queue, Storage)

Input
(API , Queue,

Storage)
f(x)

fil
te

r 1

deployment 1

MEMORY (MB)
128 10240

512 6144

1024 5120

2048 4096
3072

f(x)

fil
te

r 3

deployment 3

MEMORY (MB)
128 10240

512 6144

1024 5120

2048 4096
3072

x: (0, 100) x: (101, 10k)

MEMORY (MB)
128 10240

512 6144

1024 5120

2048 4096
3072

x: >10k

Fig. 1. Proposed Deployment Model

5 Evaluation

To evaluate the proposed concept, different use cases were tested and analyzed
to find out whether multiple deployment configurations can be beneficial. Eval-
uations were done on AWS and Azure. All implementations and the resulting
data sets are available on GitHub.

1. Image Resizing: to compare different programming languages
2. Text2Speech: investigate the effect on workflows with multiple functions
3. Face Detection: concept applied to simple use case/function

Examples from the list above have been evaluated on AWS and Azure. The
main differences between their FaaS service are configuration granularity and
dependency management. While dealing with dependencies is mainly a concern
for deployment, the configuration also affects the containerized environment dur-
ing the runtime, and, therefore, influences performance. On AWS 2 to 6 CPU
cores are assigned, depending on how much memory is configured. Memory con-
figurations range from 128 MB to 10240 MB, and all memory configurations
within these limits are possible. The percentage of how much this core can be
utilized scales between those CPU steps. On Azure only a few different machines
can be selected, which are tied to different pricing plans and support 1–4 CPUs
and between 3.5 and 14 GB of memory. Thus, all Azure-related figures below
have significantly fewer measurement points on the x-Axis because the number
of different configurations is very limited.

5.1 Image Resizing

To compare the effect of this concept on different programming languages, we
implemented an image resizing function. It takes an image from the respective
storage service and scales it to a width of 100 px. The languages used are C#,
Ruby, Go, JavaScript, Java, and Python. Since Azure does not support Ruby
and Go, these were only tested on AWS.

As seen in Fig. 2, there is no significant change in behavior throughout the
possible configurations, and therefore this concept and it can be applied regard-
less of the language. Performance does differ in languages, but this is related not
only to the language used, but also to the image library used for this implemen-
tation.

Optimizing the Cost-Performance Ratio of FaaS Deployments 269

Fig. 2. Image Resizing in all available languages

5.2 Text to Speech

We also evaluated a text-to-speech workflow as it was analyzed in [5]. The work-
flow starts with a message in written form, and there are two functions running
in parallel at the beginning. The first detects profanity within the message, while
the other converts the message to audio. The audio is in mp3 format and is later
converted to wav format. The parallel workflow ends here, and the inputs of the
Conversion and Profanity function are merged as input for Censor, where found
profanities are removed. The last step reduces the sample rate of the wav file to
make the final file smaller. The assignment of categories is done on the basis of
string length. In this implementation, the length of the string is passed in the
initial JSON body. Without this additional parameter, an initial function would
be necessary, which also passes the length of the text. The initial idea was to
pass only the state (audio) through the functions in the workflow using Amazon
StepFunctions and Azure Logic Apps but due to limitations of the state size
that can be passed through, a storage service was used. To determine whether
it makes sense to apply the proposed concept to this workflow, the following
categories were assumed and evaluated: short string length 101, medium: string
length 1059 and long : string length 2092.

AWS. Figures do not show the first few memory configurations, because the
CPU’s percental performance scaling makes the functions so slow, such that this
configuration would not be used and figures become hard to read.

The function to convert mp3 to wav is investigated in Fig. 3b. While this func-
tion has increased performance with more memory assigned, the price increases
as well. Therefore, when the duration of this performance does not matter and
longer executions do not interfere with the amount of necessary concurrent exe-
cutions, the lowest configuration can be selected. In most cases, however, a cer-
tain threshold has to be met. Assuming that the function should terminate
successfully in 1 s and the inputs of the categories are distributed equally, hav-
ing multiple deployments saves 8.6% cost. This is achieved by selecting 128 MB
memory for category short, 512 MB memory for the category mid and 1024 MB
memory for category long.

With multiple deployments, the cost would come to (in order of low + mid +
long) 0.34 $ + 0.83 $ + 1.70 $ = 2.87 $ instead of 0.48 $ + 0.96 $ + 1.70 $ = 3.14
$ with all categories handled by the deployment with 1024 MB memory. The
compression function is similar to the conversion function as shown in Fig. 3c.

270 R. Patsch and K. M. Göschka

Therefore, the same reasoning applies here. If a threshold of 1 s is assumed, the
following memory assignments can be applied: low 128 MB, mid : 256 MB and
long 512 MB, resulting in a reduced cost of 0.27 $ + 0.43 $ + 0.67 $ = 1.36 $
instead of 0.31 $ + 0.47 $ + 0.67 $ = 1.44 $ and thus saving 5.57 % compared
to a single deployment.

(a) Profanity function

(b) Conversion function

(c) Compression function

Fig. 3. Measurements of the text-to-speech functions on AWS and Azure

Azure. Looking at the Profanity function in Fig. 3a, with an assumed duration
threshold of 1.5 s, the deployments for different categories could be split into
Consumption for short and mid, and EP2 for long. This results in 0.58 $ +
2.93 $ + 16.19 $ = 19.70 $, instead of 5.54 $ + 11.21 $ + 16.19 $ = 32.94 $
and therefore in a cost reduction of 40.22%. Then again, this configuration split
only makes sense when the saved 0.25 s are beneficial. This high potential of
cost savings is due to the circumstance that Azure deployments are very limited,
which explains the drastic price increase from one configuration to the next. The
Azure part of Fig. 3b shows that it is not worth splitting the conversion function
on Azure into multiple deployments with different configurations, because the
cheapest deployment configuration is also the fastest. The compression function
shows that there is no decrease in duration from EP2 to EP3, and the differences
in duration are only slight.

5.3 Face Detection

The main idea is to upload an image to the respective file storage service of a
CSP, which triggers a function. This function detects faces in uploaded images

Optimizing the Cost-Performance Ratio of FaaS Deployments 271

and blurs them out. The output of this function will be saved in the same file
storage in another folder. The function has been tested with a low-, medium-, and
high-resolution image to obtain their respective prices and run-time durations
on different FaaS configurations. In most cases, not all possible configurations
were tested because provided that memory was not sufficient and, therefore,
execution with these settings was not possible. Having additional deployments
with a better configuration to enable more demanding input could be another
argument to justify this concept. To apply the concept of Sect. 4, a filter can be
applied for the file upload trigger. Without further implementations, this filter
is restricted to the filename or path. Thus, the file has to have a prefix or be in a
specific folder to be processed by the right function/deployment. To obtain more
information about the used image file, another function would be necessary to
read and provide such details. This has been tested on AWS and Azure, used
images (inputs and outputs), and implementations are also available on GitHub.
The implemented versions used do not only scale with the resolution and file size
of the image, and therefore the categories are low resolution: 40 KB, medium
resolution: 2 MB, and high resolution 7 MB.

AWS. Figure 4a compares different category of images on AWS. As the axes are
scaled to have the same range, it becomes evident that multiple implementations
can be applied in this case. Assuming an arbitrary quality of service requirement
of ten seconds for high-resolution images, almost any configuration can provide
this for the low and medium categories. As a matter of fact, the reasoning can
also be done in the other direction; when high-resolution images only account for
a very low percentage of all requests or processed images, the optimum can be
looked for in the other categories, and the configuration for the higher computa-
tional demand is only to cover these inputs as well, without having ridiculously
high response times. From this point of view, performance is gained by applying
this concept, although this comes at a higher price.

Azure. Figure 4b compares different image categories on Azure. Again, the
small number of different configurations also limits the possible combinations
across various categories to improve the cost-performance ratio. In this case, it
can be beneficial to have multiple deployments for the same function on Microsoft
Azure. Since Azure offers only four different configurations, the maximum num-
ber of categories is also four. If these four categories really would allocate only
the appropriate amount of memory based on the observed resource consumption,
this would allow many more categories, since then, multiple same configurations
can be used for different inputs, and because of a deviating observed memory
usage with its input, this would create another possible configuration for a cate-
gory. Using the proposed approach of this paper, other categories get away with
using better configurations for their respective computational demands.

272 R. Patsch and K. M. Göschka

6 Discussion

While the proposed concept is applicable in many situations, the veracity of
chosen configurations can only be determined by exhaustive evaluation. Find-
ing the optimal FaaS configuration for every input range is not practical, and
therefore input classification must be performed to limit the number of different
deployments. The key challenge is to know what the major influences of a certain
input are on a function’s runtime and memory usage. Based on that, classifica-
tion can be done and several FaaS can be deployed for their respective inputs.
The implementation that utilizes multiple processes had the best performance
in proportion to the number of inputs, and therefore the best cost-performance
ratio.

(a) Face recognition function AWS

(b) Face recognition function Azure

Fig. 4. Measurements for the face recognition function

6.1 Future Work

The presented work investigates the efficiency of input-based deployment config-
urations by assigning each input to a specific deployment. By now, the selection
is based on superficial attributes, such as the filename or the value of a number.
Determining which attributes or values of an input cause certain changes in a
function’s computational requirements is outside this paper’s scope but would
be conducive to its practicability and integration into modern CI/CD pipelines
to improve its workflow. This paper can be seen as a prequel to this endeavor
to ensure that this concept can be advantageous. Determining the correlation
between data types, semantic structures, and complexity of a function to approxi-
mate its computational demands in FaaS environments, respectively, to its CSP’s
specific behavior, is the next step to a modern Software Engineering workflow
with assumptions and manual steps involved. Moreover, this paper conducted
only experiments with functions with only one input parameter. The impact of
several input parameters and the effect of their combination on computational
demand have not yet been researched.

Optimizing the Cost-Performance Ratio of FaaS Deployments 273

6.2 Conclusion

This paper evaluated the efficiency of splitting workload in FaaS deployments
based on its input to increase performance and decrease cost. Several imple-
mentations have been tested on AWS and Lambda to obtain data on different
configuration and pricing models. To rate the applicability of our concept, we
evaluated (1) image resizing, (2) text-to-speech and (3) face detection. Finally,
all cases were measured by comparing multiple input categories to judge the
proposed concept based on these implementations.

Given this paper’s findings we reflect on our research question in Sect. 2:

– RQ1: Does it pay off to follow the proposed design?
– Yes, deploying multiple FaaS configurations for the same function can pay

off. Use cases where only certain response times for all different categories
are sufficient, are conducive to the applicability of this approach.

The key takeaway is that one has to be aware of how chosen FaaS configuration
utilizes its resources and which resources are available. The proposed model
can be profitable in several scenarios, always depending on the goal and relevant
metrics. When a function is taken out of a full-stack application and is outsourced
without further optimization, the efficiency cap depends on the CSP’s resource
scaling.

– RQ2: Which scenarios favor the efficiency of this approach?
– The efficiency of this approach depends on (1) how appropriate the categories

are delineated, (2) the amount of requests in each category, (3) how fine-
grained FaaS deployments can be configured and (4) how performance and
price develop with better configurations.

The correct assignability of inputs to categories is key to routing every input to
its most ideal deployment. Designing these categories requires a deep understand-
ing of how the computational demands of a function grow with which input. This
becomes even more complex when a function has multiple inputs. Moreover, the
relationship between inputs that have low computational demands and inputs
with high computational demands determines how high the gain in performance
or cost savings really is. In the case of an efficient classification, however, and a
reasonable amount of requests for given input classes, the achieved cost reduc-
tion covers additional expenses for further Cloud Computing infrastructure and
man-hours for setup and maintenance.

– RQ3: Are there significant differences between AWS and Azure
when this model is applied?

– As of now the main difference between the evaluated CSP’s (AWS and Azure)
are the more limited configuration capabilities on Azure and therefore the
amount of categories is capped but also the most optimal configuration is
harder to find, since there are less configurations available in total.

274 R. Patsch and K. M. Göschka

Fewer different configurations lower the probability of finding the most cost-
efficient configuration for every single use case. Thus, some use cases have only
one optimal configuration for both categories. This circumstance makes addi-
tional deployments superfluous. Azure reduced its configuration possibilities to
a minimum with the reasoning of becoming more serverless. If more CSP’s fol-
low that example, this will hinder the efficiency of the proposed design. CPU
power scales differently on AWS. Azure offers more memory in its most potent
configuration, whereas Amazon offers up to six CPU cores instead of four.

The minimal amount of configurations also limits the relevant variables
to compare different providers. To find the most suitable deployment, CPU
demands, memory demands, duration threshold, and the approximated number
of requests are necessary. Only pricing information must be available to make a
decision. Even when computational demands are unknown, an exhaustive eval-
uation of different providers can rate the efficiency of possible categories.

References

1. Alencar, D., Both, C., Antunes, R., Oliveira, H., Cerqueira, E., Rosário, D.:
Dynamic microservice allocation for virtual reality distribution with GoE support.
IEEE Trans. Netw. Serv. Manag. 19(1), 729–740 (2022)

2. vom Brocke, J., Hevner, A., Maedche, A.: Introduction to design science research.
In: vom Brocke, J., Hevner, A., Maedche, A. (eds.) Design Science Research. Cases.
PI, pp. 1–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46781-4 1

3. Dashbird: Performance monitoring for aws lambda. Web, March 2023. https://
dashbird.io/blog/performance-monitoring-for-aws-lambda/

4. Eismann, S., Bui, L., Grohmann, J., Abad, C.L., Herbst, N.R., Kounev, S.: Sizeless:
predicting the optimal size of serverless functions. In: Proceedings of the 22nd
International Middleware Conference (2021)

5. Eismann, S., Grohmann, J., van Eyk, E., Herbst, N., Kounev, S.: Predicting the
costs of serverless workflows. In: Proceedings of the ACM/SPEC International
Conference on Performance Engineering, pp. 265–276. ICPE ’20, Association for
Computing Machinery, New York, NY, USA (2020)

6. Elgamal, T., Sandur, A., Nahrstedt, K., Agha, G.: Costless: optimizing cost of
serverless computing through function fusion and placement. In: 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pp. 300–312 (2018)

7. Hellerstein, J.M., et al.: Serverless computing: one step forward, two steps back.
ArXiv abs/1812.03651 (2019)

8. Ishakian, V., Muthusamy, V., Slominski, A.: Serving deep learning models in a
serverless platform. In: 2018 IEEE International Conference on Cloud Engineering
(IC2E), pp. 257–262 (2018)

9. Kim, Y., Lin, J.: Serverless data analytics with flint. In: 2018 IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD), pp. 451–455 (2018)

10. Kusnierz, J., et al.: A serverless engine for high energy physics distributed analy-
sis. In: 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, May 2022

11. McGrath, G., Brenner, P.R.: Serverless computing: design, implementation, and
performance. In: 2017 IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), pp. 405–410 (2017)

https://doi.org/10.1007/978-3-030-46781-4_1
https://dashbird.io/blog/performance-monitoring-for-aws-lambda/
https://dashbird.io/blog/performance-monitoring-for-aws-lambda/

Optimizing the Cost-Performance Ratio of FaaS Deployments 275

12. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a
taxonomy and survey. ACM Comput. Surv. 51(4), 1 (2018)

13. Savazzi, S., Nicoli, M., Rampa, V.: Federated learning with cooperating devices:
a consensus approach for massive IoT networks. IEEE Internet Things J. 7(5),
4641–4654 (2020)

14. Son, M., et al.: Splice: an automated framework for cost-and performance-aware
blending of cloud services. In: 2022 22nd IEEE International Symposium on Clus-
ter, Cloud and Internet Computing (CCGrid), pp. 119–128 (2022)

15. Spillner, J., Mateos, C., Monge, D.A.: FaaSter, better, cheaper: the prospect of
serverless scientific computing and HPC. In: Mocskos, E., Nesmachnow, S. (eds.)
CARLA 2017. CCIS, vol. 796, pp. 154–168. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73353-1 11

16. Wang, H., Niu, D., Li, B.: Distributed machine learning with a serverless architec-
ture. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications,
pp. 1288–1296 (2019)

17. Wang, J., Pan, J., Esposito, F., Calyam, P., Yang, Z., Mohapatra, P.: Edge cloud
offloading algorithms: issues, methods, and perspectives. ACM Comput. Surv.
52(1), 17–18 (2019)

https://doi.org/10.1007/978-3-319-73353-1_11
https://doi.org/10.1007/978-3-319-73353-1_11

The Microservice Dependency Matrix

Amr S. Abdelfattah1 and Tomas Cerny2(B)

1 Computer Science, Baylor University, One Bear Place, Waco, TX 97141, USA
amr elsayed1@baylor.edu

2 Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA

tcerny@arizona.edu

Abstract. Microservices have been recognized for over a decade. They
reshaped system design enabling decentralization and independence of
development teams working on particular microservices. While loosely
coupled microservices are desired, it is inevitable for dependencies to
arise. However, these dependencies often go unnoticed by development
teams. As the system evolves, making changes to one microservice may
trigger a ripple effect, necessitating adjustments in dependent microser-
vices and increasing maintenance and operational efforts. Tracking differ-
ent types of dependencies across microservices becomes crucial in antici-
pating the consequences of development team changes. This paper intro-
duces the Endpoint Dependency Matrix (EDM) and Data Dependency
Matrix (DDM) as tools to address this challenge. We present an auto-
mated approach for tracking these dependencies and demonstrate their
extraction through a case study.

Keywords: Microservice Dependency · Static Analysis · Service
Dependency · System Evolution · Automated Reasoning

1 Introduction

Microservice Architecture is widely used for complex systems that require selec-
tive scalability or the decomposition of complex organizational structures into
smaller, independently managed units handled by separate development teams.
As software systems evolve due to market demands, technological shifts, patches,
or optimizations, new features are implemented, and bugs are fixed, potentially
introducing new services and system dependencies [2]. Isolated modifications
of individual services typically do not cause disruptions to others [8]. Neverthe-
less, as systems undergo evolution and dependencies naturally emerge within the
architecture, posing challenges to the system’s consistency and maintainability.
Hence, it becomes crucial to proactively monitor and uphold the principles of low
coupling and minimize dependencies within the architecture. In fact, consider a
scenario where a critical bug is identified in a particular microservice. By accu-
rately tracking the system dependencies, developers can confidently modify and
debug the specific microservice without worrying about unintended consequences

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 276–288, 2023.
https://doi.org/10.1007/978-3-031-46235-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46235-1_19&domain=pdf
http://orcid.org/0000-0001-7702-0059
http://orcid.org/0000-0002-5882-5502
https://doi.org/10.1007/978-3-031-46235-1_19

The Microservice Dependency Matrix 277

or unintended disruptions to other interconnected services. This highlights the
importance of actively managing and preserving a low-coupling architecture to
ensure the long-term stability and scalability of microservice-based systems.

Recent studies highlight the lack of methods to prevent maintainability prob-
lems in microservices [1]. While existing metrics focus on direct dependencies
introduced through endpoint calls between microservices, other aspects intro-
duce dependencies too. For example, the presence of a common data model
between microservices can lead to inconsistencies and coupling, where changes in
one microservice may require modifications in others. This perspective provides
another dimension to understanding the interconnectivity between microservices.

The main objective of this paper is to introduce and identify system depen-
dencies at different perspectives, including direct endpoint calls and data depen-
dencies, by analyzing the source code of microservices-based systems. We aim
to offer a comprehensive understanding of service dependencies.

One of the key contributions of this paper is the development of an automated
approach that extracts this dependency information directly from the codebase,
ensuring that the obtained insights are up-to-date and free from outdated or
stale information. The paper’s contributions are summarized as follows:

– Describing automated approaches for constructing the Endpoint Dependency
Matrix (EDM) and Data Dependency Matrix (DDM) of microservice-based
systems.

– Implementing a prototype that applies the proposed approaches.
– Conducting a case study on a real public microservice project to generate the

dependency matrices and discuss the results.

The paper is organized as follows. Section 2 presents the proposed method for
constructing the dependency matrices. Section 3 presents the case study results
for validation. Section 4 discusses the approach and potential threats to validity.
Section 5 introduces related works. Finally, Sect. 6 concludes the paper.

2 The Proposed Dependency Methodology

The proposed method focuses on capturing the dependencies within microservice
systems by considering both endpoints and data entities. Microservices systems
utilize specialized frameworks to streamline the development of diverse capabil-
ities. These frameworks often leverage object-oriented concepts and offer robust
implementations. Through the utilization of static analysis techniques applied
to the source code of the microservices, the necessary components are extracted
to facilitate a comprehensive understanding of the system’s dependencies.

To construct the EDM, the method identifies the direct endpoint calls within
the source code, capturing the dependencies between microservices. The DDM is
generated to represent the dependencies based on the shared data entities among
microservices. By combining the information from EDM and DDM, a holistic
depiction of the system’s dependencies is achieved, providing insights into the
flow of dependencies between both endpoints and data entities.

278 A. S. Abdelfattah and T. Cerny

This approach serves as a valuable tool for practitioners to gain a comprehen-
sive understanding of the intricate dependencies within microservice systems. By
examining the system from both the endpoints and data perspectives, potential
bottlenecks, inefficiencies, or critical dependencies can be identified, enabling
better decision-making for system maintenance and evolution.

Fig. 1. Endpoint Dependency Matrix Generation Process.

2.1 Endpoint Dependency Matrix (EDM)

The dependency between endpoints reveals the interdependencies among differ-
ent microservices, where one microservice’s source code contains a request call to
an endpoint of another microservice. Our process examines the distributed source
codes of microservices to extract the defined HTTP endpoints and request calls.
This process consists of three phases, as depicted in Fig. 1: Endpoint Extraction,
Call Extraction, and Signature Matching.

In the Endpoint Extraction phase, we identify and extract the HTTP
endpoints defined in the source code. Typically, endpoints are specified using
framework-specific functions or annotations. This approach ensures consistency
in metadata identification. During this phase, we collect various attributes for
each endpoint, including the path, HTTP method, parameters, and return type.

The Call Extraction phase focuses on extracting the requests made from
the source code. By identifying the corresponding client, we determine where
these endpoints are called from other services. Through code analysis, we can
gather metadata about every call in the system by identifying the appropriate
function call formats specific to the known HTTP library. Therefore, we extract
the path, HTTP method, parameters’ values, and the expected return type.

The Signature Matching phase involves comparing endpoint method sig-
natures with data and parameters exchanged during REST call interactions. This

The Microservice Dependency Matrix 279

process finds the matches between endpoint and request calls in the distributed
source code. The collected endpoint and call details are merged to establish asso-
ciations between calls and their corresponding endpoint components. However,
direct matching is complex due to the endpoint definition including parame-
ter data types, while request calls involve parameter values or variables in the
request’s body or path. Our approach initially considers path and parameter
count matching. Subsequently, regular expressions are employed to identify the
optimal match for parameter types with values in the calls. A successful match
signifies a communication path between microservices via the matched endpoint.

Consequently, we can generate an EDM that illustrates the number of request
calls between each pair of microservices in the system, thereby displaying the
communication dependencies.

2.2 Data Dependency Matrix (DDM)

Each microservice establishes a data-bounded context that defines the scope
where its specific domain model applies. To identify data dependencies, this
method employs static analysis techniques to extract bounded contexts from each
microservice’s source code. It then proceeds to determine the correspondence
between data entities across the individual bounded contexts. The construction
process for data dependencies consists of three phases, as illustrated in Fig. 2:
Components Extraction, Entity Filtration, and Entity Matching.

In the Components Extraction phase, all local classes declared in the
project are extracted. Once these classes are identified, the Entity Filtration
phase follows, which selects both Data Transfer Objects (DTOs) and classes
representing persistent data. It focuses solely on data-related entities, excluding
other classes like those serving as REST controllers or internal services. These
two phases leverage enterprise standards and frameworks’ components, such as
annotation descriptors, to differentiate between class types based on their seman-
tic purpose.

Fig. 2. Data Dependency Generation Process.

Finally, the Entity Matching phase examines all extracted entities across
the microservices to generate a matching list between them. Different bounded

280 A. S. Abdelfattah and T. Cerny

contexts may have distinct intentions for the shared entities, resulting in poten-
tial variations in the fields they retain. This phase matches entities based on
their names, considering if they are the same or similar. Additionally, it exam-
ines whether some of their fields share the same data type and possess similar or
identical names. This process yields the DDM, which provides insight into the
common data entities among microservices.

3 Case Study

To demonstrate the effectiveness of our method, we apply it to a real-world sce-
nario. It showcases the capabilities of capturing and understanding the depen-
dencies present in microservice systems. Additionally, we seek to provide valuable
insights into the interconnectedness of endpoints and data dependencies, leading
to a comprehensive understanding of the system’s overall dependency landscape.

Our approach was implemented into a prototype, which we utilized to analyze
a publicly available testbench. This allowed us to construct matrices depicting
the dependencies of endpoints and data. The comprehension of system depen-
dencies provided by these matrices serves as a valuable tool for facilitating seam-
less modifications and preserving the maintainability of the system. Moreover,
these matrices play a crucial role in monitoring the evolution of dependen-
cies throughout system changes. By generating and analyzing the dependency
matrix, developers can track the impact of each commit on the system, observe
how it affects system dependencies, and evaluate system coupling and stability.
This enables informed decision-making and proactive management of dependen-
cies, ultimately leading to a more robust and adaptable system architecture.

3.1 Prototype Implementation and Testbench

We developed a prototype1 implementation of our proposed approach specif-
ically designed for analyzing Java-based microservices projects utilizing the
Spring Boot framework. The prototype utilizes Graal [5], the runtime system
developed by Oracle Labs. The prototype takes a GitHub repository containing
microservices-based projects as input. It downloads the repository and generates
a list of directories for each microservice project.

For the Endpoint Dependency Matrix, the prototype scans the project
files for JAX-RS annotations that define endpoints. By combining class-level
and method-level annotations, it creates a comprehensive definition for each
endpoint, including its path, HTTP method, parameters, and return type. The
prototype also scans each microservice to identify the Spring Boot REST client
(RestTemplate client) and detects HTTP calls between services. It then applies
the signature matching technique to match the detected calls with the corre-
sponding endpoints. The prototype generates a JSON structure that represents

1 Prototype: https://github.com/cloudhubs/graal-prophet-utils.

https://github.com/cloudhubs/graal-prophet-utils

The Microservice Dependency Matrix 281

the dependencies between microservices and the matched calls. Each microser-
vice name serves as a key in the structure, containing two list values: Dependen-
cies and Dependant services. These lists provide detailed information about the
involved endpoints associated with each microservice node.

Regarding the Data Dependency Matrix, the prototype extracts all local
classes in the project using a source code analyzer. It filters this list down to
classes serving as data entities using persistence annotations (JPA standard
entity annotations such as @Entity and @Document). It also considers annota-
tions from Lombok2, a tool for automatically creating data entity objects (e.g.,
@Data), although these annotations do not explicitly indicate persistence. The
prototype then examines the entities of different bounded contexts and their
fields, applying the matching rules described above. To detect name similar-
ity, the prototype employs the WS4J3 project, which relies on the WordNet [4]
dictionary. The prototype generates a JSON format, including entities and rela-
tionships for each microservice. It also presents a list of entities that provides a
holistic context map of the system after eliminating duplicated matched entities.

Testbench: To demonstrate our case study, we utilized a public microservices
testbench known as the train-ticket4 testbench system. It comprises 47 microser-
vices, with 42 of them based on the Java-based Spring Boot framework. The
system adheres to enterprise conventions by employing distinct controllers, ser-
vices, and repositories for layering the application. Inter-service communication
between microservices in the system is facilitated through REST API calls.

3.2 Results

The prototype was executed on the testbench to construct the endpoint and data
dependencies. To ensure the data extraction’s completeness, the prototype out-
comes were manually validated. The resulting dependencies were analyzed sep-
arately and subsequently combined to form a comprehensive dependency view
of the system. The heatmap is used as the visualization approach for the depen-
dencies. Due to space constraints, the discussion refers to the microservices IDs
listed in Table 1. For more detailed results, please refer to the provided dataset5.

Endpoint Dependency: The endpoint dependency matrix (EDM) is depicted
in Fig. 3. The first column represents the microservices IDs containing request
calls to the microservices listed in the first row. The values within each cell
indicate the number of endpoint calls between each pair of microservices.
Microservices containing no request calls to other microservices have been
removed from the first column. This includes the following 16 microservices:
1, 4, 7, 9, 11, 13, 16 − 18, 20 − 22, 31, 32, 40, and 42. Similarly, microservices that
do not have any request calls made to them have been eliminated from the

2 Lombok: https://projectlombok.org.
3 WS4J: https://github.com/Sciss/ws4j.
4 Train-ticket V1.0.0: https://github.com/FudanSELab/train-ticket/tree/v1.0.0.
5 Dataset: https://zenodo.org/record/8106860.

https://projectlombok.org
https://github.com/Sciss/ws4j
https://github.com/FudanSELab/train-ticket/tree/v1.0.0
https://zenodo.org/record/8106860

282 A. S. Abdelfattah and T. Cerny

first row, resulting in removing the following 16 microservices: 1, 19, 23, 24, 26 −
30, 32 − 35, 39, 41, and 42.

The dependency matrix showcases dependencies between multiple microser-
vices, primarily consisting of one or two endpoint calls. However, there are
four dependencies with a degree of three: 25 → 18, 27 → 7, 29 →
17, and 39 → 36. Notably, these dependencies originate from different
microservices. The highest degree of dependencies observed is four, which
occurs in seven pairs of microservices: 23 → 6, 27 → {9, 16, 18, 22}, and
28 → {14, 15}. The microservice ts-admin-basic-info-service (ID 27)
exhibits a fourth-degree dependency on four distinct microservices, while the
microservice ts-admin-order-service (ID 28) relies on the microservices
ts-order-other-service (ID 14) and ts-order- service (ID 15), each with
four endpoint calls.

Examining the longest rows containing values in the matrix reveals microser-
vices with the highest number of dependencies, indicating that they make
requests to a significant number of other microservices. For instance, the
ts-rebook- service (ID 24) exhibits dependencies on eight different microser-
vices, while the longest row belongs to ts-preserve-other-service (ID 34) and
ts-preserve- service (ID 35) with eleven dependencies. On the other hand,
analyzing the longest column highlights the microservices with the most depen-
dants, meaning they receive requests from a greater number of microservices.
The matrix indicates that ts-route-service (ID 17) and ts-train-service
(ID 22) have a length of seven dependent microservices. However, the longest
column contains eight dependants, which are microservices with IDs 14, 15, and
18.

Table 1. List of train-ticket microservices and associated IDs

ID Name ID Name ID Name

1 ts-common 15 ts-order-service 29 ts-admin-route-service

2 ts-travel-service 16 ts-price-service 30 ts-admin-travel-service

3 ts-travel2-service 17 ts-route-service 31 ts-consign-price-service

4 ts-assurance-service 18 ts-station-service 32 ts-delivery-service

5 ts-auth-service 19 ts-food-delivery-service 33 ts-execute-service

6 ts-user-service 20 ts-station-food-service 34 ts-preserve-other-service

7 ts-config-service 21 ts-train-food-service 35 ts-preserve-service

8 ts-consign-service 22 ts-train-service 36 ts-route-plan-service

9 ts-contacts-service 23 ts-admin-user-service 37 ts-seat-service

10 ts-food-service 24 ts-rebook-service 38 ts-security-service

11 ts-payment-service 25 ts-basic-service 39 ts-travel-plan-service

12 ts-inside-payment-service 26 ts-cancel-service 40 ts-verification-code-service

13 ts-notification-service 27 ts-admin-basic-info-service 41 ts-wait-order-service

14 ts-order-other-service 28 ts-admin-order-service 42 ts-gateway-service

The Microservice Dependency Matrix 283

Fig. 3. Endpoint Dependency Matrix (EDM). The longest rows and columns are visu-
ally marked using a red rectangle. (Color figure online)

Table 2. Endpoints receiving more than three calls from other microservices.

ID Endpoint Path Method #Calls #µs

17 ts-route-service/api/v1/routeservice/routes GET 8 7

18 ts-station-service/api/v1/stationservice/stations/id GET 4 3

22 ts-train-service/api/v1/trainservice/trains/byName GET 6 6

25 ts-basic-service/api/v1/basicservice/basic/travel POST 6 4

Further analysis delves into whether the dependants of a microservice
make requests to the same endpoint or if they are spread across multi-
ple endpoints within the microservice. The table presented in Table 2 high-
lights the endpoints that receive multiple requests from other microser-
vices, specifically focusing on endpoints with more than three requests. It is
important to note that not every call originates from a distinct microser-
vice as shown in column (#µs). Notably, the GET endpoint with the
path ts-route-service/api/v1/routeservice/route receives eight calls from
seven different microservices. This observation could indicate a potential func-
tional bottleneck in the system, where multiple microservices rely on this end-
point to fulfill their respective use cases.

284 A. S. Abdelfattah and T. Cerny

Fig. 4. Data Dependency Matrix (DDM). The longest rows and columns are visually
marked using a red rectangle. (Color figure online)

Data Dependency: The data dependency matrix (DDM) in Fig. 4 represents
the number of common data entities between microservice pairs. The rows and
columns correspond to microservice IDs, while the cell values indicate the count
of matched data entities. Unlike the endpoint dependency matrix (EDM), this
matrix is symmetric and undirected, meaning the values remain the same regard-
less of whether one starts from the rows or columns. A total of 18 microservices
(IDs 25–42) have been excluded from the rows and columns of the DDM because
they do not share any common data entities with other microservices.

The matrix reveals that multiple microservices share one or two common data
entities with other microservices. However, the maximum number of common
entities between a pair of microservices is four, observed between ts-common
(ID 1) and both ts-travel-service (ID 2) and ts-travel2-service (ID 3),
and also between ts-travel-service (ID 2) and ts-travel2-service (ID 3).

Moreover, the longest row in terms of values belongs to ts-common (ID
1), indicating that this microservice shares the most common entities with
other twenty microservices. However, the next longest row corresponds to
ts-user-service (ID 6) with a length of only three, highlighting a signifi-
cant disparity in data dependencies among the microservices, with a concen-
tration of dependencies in a single microservice (ts-common). Upon further
examination of the most common data entities across all microservices, we iden-
tified eight commonly shared entities: AdminTrip, Order, OrderAlterInfo,

The Microservice Dependency Matrix 285

StationFoodStore, Travel, Trip, TripAllDetail, and User. All these enti-
ties also exist in ts-common, but are shared only across three distinct microser-
vices.

Comprehensive Service Dependency: By combining the EDM and the
DDM, we generate a comprehensive perspective of the system’s dependencies
known as the Service Dependency Matrix (SDM), as shown in Fig. 5. The SDM
represents microservice IDs as both columns and rows. The cell values in the
SDM are decimal numbers, where the integer part corresponds to the endpoint
dependency degree from the EDM, and the fractional part corresponds to the
data dependency degree from the DDM.

Fig. 5. Service Dependency Matrix (SDM).

To visually distinguish between different types of dependencies, the matrix
utilizes different colors for endpoints-only dependencies, data-only dependen-
cies, and dependencies involving both endpoints and data. The inclusion of
data dependency in the fractional part of the SDM does not diminish its
value compared to the endpoint dependencies. The construction of the deci-
mal value is primarily related to the data formatting rather than the abso-
lute significance of the cell value. For instance, consider the cell at position
(row: 23, column: 6) in the SDM, which has a value of 4.1. This value indi-
cates that ts-admin-user-service microservice (ID 23) has made four calls

286 A. S. Abdelfattah and T. Cerny

to ts-user-service microservice (ID 6), and there is one common entity
(UserDto) shared between them.

Analyzing the SDM, it becomes apparent that the responsibility of hold-
ing common data entities among microservices is predominantly concentrated in
the ts-common microservice. This concentration results in distinct separations
between the dependencies of endpoints and data entities. However, some over-
laps can still be observed between the following four microservice pairs: 6 → 5,
12 → 11, 19 → 20, and 23 → 6. These pairs demonstrate a strong dependency
within the system, as they depend on each other for both direct endpoint calls
and the presence of common data entities. These dependencies highlight their
interconnected nature and the importance of their mutual interaction.

4 Discussion

In the proposed method, we aim to provide a comprehensive understanding of
system dependencies by considering both the endpoints and data perspectives.
The introduced dependency matrices present system-centric perspectives that
have the potential to provide a scalable visualization approach, helping practi-
tioners in comprehending the system architecture and its dependencies. Blending
endpoint dependencies (EDM) and data dependencies (DDM) within a unified
matrix (SDM) has the potential to unveil more profound architectural concerns
within microservices applications, surpassing what can be discerned from the
separate EDM and DDM matrices. Moreover, by comparing the metrics across
different versions, we can track the evolution of system dependencies over time.

While our method and prototype are valuable, it is important to acknowledge
their limitations, particularly regarding the consideration of other perspectives
of dependencies. The asynchronous communication model between microservices
(e.g., publish-subscribe pattern), is not currently covered by our approach and
they are not used in the train-ticket testbench as well. Incorporating such per-
spectives would provide additional insights into the interconnections between
system components beyond the direct endpoint calls. Furthermore, this study
focuses on analyzing the system’s source code to gain a holistic understanding of
all possible execution paths. However, considering the runtime interactions cap-
tured in logs and traces could provide valuable insights into the actual number
of calls made to a particular microservice. This additional perspective could offer
an additional depiction of the dependencies between microservices and enhance
our understanding of the system’s behavior.

Threats to Validity: The method does not address all potential microservice
dependencies, its purpose is to illustrate how dependency matrices can assist in
system analysis. Our prototype tool is tailored for the Java platform, potentially
restricting its relevance to other programming languages. However, it’s impor-
tant to emphasize that the focus was on introducing the methodology rather
than creating an exhaustive tool. In certain cases, the prototype tool might
encounter challenges in accurately matching method signatures, particularly in
situations where there are ambiguous method names. Additionally, the entity

The Microservice Dependency Matrix 287

matching process is currently restricted to basic similarities such as names and
field matches, indicating that there are inherent limitations in approximation.

The case study analysis may be influenced by specific constructs present in
the selected testbench, potentially limiting the prototype’s generalizability across
different systems. However, manual validation of the prototype’s outcomes was
performed to ensure the completeness of information extraction from the source
code. Furthermore, the chosen testbench is employed in various research and is
regarded as a well-established and representative microservice system.

5 Related Work

Numerous studies underscore the significance of managing dependencies in
microservice architectures. According to Lewis and Fowler [8], loosely coupled
microservices offer advantages in independent modifications but pose challenges
as systems evolve. To analyze such dependencies, scholars have introduced var-
ious techniques. Apolinário et al. [1] focus on endpoint calls, Sangal et al. [11]
employ static analysis for dependency models, and Eski and Buzluca [6] use
evolutionary code coupling. Our approach uses static analysis to extract and
integrate both endpoint and data dependencies for a comprehensive system view.

In the realm of heterogeneous dependencies in distributed systems, Fang et
al. [7] devised specialized tools for compile-time dependency extraction through
static analysis. They targeted entity dependencies within components and hard-
coded API dependencies, using text comparison. In contrast, our method goes
beyond text-based analysis, incorporating semantic similarities and fine-grained
dependency capture through signature matching.

Effective visualization is crucial for comprehending system dependencies.
Multiple studies [3,9,10] propose graph-based visualizations depicting microser-
vice dependencies, focusing on communication patterns via endpoint calls. In
contrast, our approach employs dependency matrices to visualize and analyze
the system, offering a distinct view of microservices’ dependencies.

6 Conclusion

System dependency analysis in microservices provides valuable insights for
practitioners to comprehend the system. This paper integrates endpoint and
data dependencies, offering a comprehensive understanding of system depen-
dencies and facilitating informed decision-making in developing and evolving
microservice-based systems. The analysis is addressed through static code anal-
ysis providing perspectives that enable reasoning about system maintainability
and monitoring system dependency evolution across different versions. Our app-
roach encompasses a detailed analysis of individual microservices, combining
the results to a holistic dependency perspectives that can be visualized and
interpreted. The focus was on generating the EDM and DDM from the source
code and further combining them to create the SDM for a more comprehen-
sive perspective. The proposed methodology was implemented in a prototype

288 A. S. Abdelfattah and T. Cerny

and validated through a case study, highlighting its efficacy in understanding
system dependencies.

Future work will include asynchronous call dependencies, recognizing their
importance. We also aim to expand the prototype for analyzing system polyglots.

Acknowledgement. This material is based upon work supported by the National
Science Foundation under Grant No. 2245287.

References

1. Apolinário, D.R.F., de França, B.B.N.: A method for monitoring the coupling
evolution of microservice-based architectures. J. Braz. Comput. Soc. 27(1), 1–35
(2021). https://doi.org/10.1186/s13173-021-00120-y

2. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice
architecture reconstruction and visualization techniques: a review. In: 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE), pp. 39–
48. IEEE (2022)

3. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microvision:
static analysis-based approach to visualizing microservices in augmented reality.
In: 2022 IEEE International Conference on Service-Oriented System Engineering
(SOSE), pp. 49–58. IEEE (2022)

4. Christiane, F., Brown, K.: Wordnet and wordnets. In: Encyclopedia of Language
and Linguistics, pp. 665–670. Oxford: Elsevier (2005)

5. Duboscq, G., Stadler, L., Würthinger, T., Simon, D., Wimmer, C., Mössenböck, H.:
Graal IR: an extensible declarative intermediate representation. In: Proceedings of
the Asia-Pacific Programming Languages and Compilers Workshop, pp. 1–9 (2013)

6. Eski, S., Buzluca, F.: An automatic extraction approach: transition to microser-
vices architecture from monolithic application. In: Proceedings of the 19th Inter-
national Conference on Agile Software Development: Companion, pp. 1–6 (2018)

7. Fang, H., Cai, Y., Kazman, R., Lefever, J.: Identifying anti-patterns in distributed
systems with heterogeneous dependencies. In: 2023 IEEE 20th International Con-
ference on Software Architecture Companion (ICSA-C), pp. 116–120 (2023)

8. Lewis, J., Fowler, M.: Microservice. https://www.martinfowler.com/articles/
microservices.html. Accessed 13 Dec 2022

9. Oberhauser, R., Pogolski, C.: VR-EA: virtual reality visualization of enterprise
architecture models with archimate and BPMN. In: Shishkov, B. (ed.) BMSD
2019. LNBIP, vol. 356, pp. 170–187. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24854-3 11

10. Rahman, M.I., Panichella, S., Taibi, D.: A curated dataset of microservices-based
systems. In: SSSME-2019 (2019)

11. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: 20th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 167–176 (2005)

https://doi.org/10.1186/s13173-021-00120-y
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-030-24854-3_11
https://doi.org/10.1007/978-3-030-24854-3_11

Author Index

A
Abdelfattah, Amr S. 35, 276
Abdennahder, Nabil 219
Aknine, Samir 136
Albers, Toon 239
Al-Wosabi, Abdo 153
Álvarez, P. 231
Amoroso d’Aragona, Dario 19
Anagnostopoulos, Dimosthenis 188
Andronikou, Vassiliki 251

B
Bastiaansen, Harrie 239
Bickham, Ashley 35
Blume, Maximilian 119
Bugarín, A. 231
Bussler, Christoph 205

C
Cerny, Tomas 19, 35, 276
Chondrogiannis, Efthymios 251
Couturier, Raphaël 219
Cruz-Filipe, Luís 3

D
Dagenborg, Håvard 153, 170
de Quirós, J. García 231
Delzer, Ole 103
Di Marzo Serugendo, Giovanna 219
Diou, Christos 188

F
Fabra, J. 231
Fogli, Mattia 239

G
Gallego-Fontenla, V. 231
Glass, Philippe 219
Göschka, Karl Michael 263

H
Harmsma, Edwin 239
Hobeck, Richard 103
Hunter, Joshua 35

J
Janes, Andrea 19
Jawabreh, Ezdehar 55, 70

K
Karanastasis, Efstathios 251
Karwaczyński, Piotr 84
Khan, Akif Quddus 205
Khan, Mohsin 153
Kokkinos, Panagiotis 251
Korontanis, Ioannis 188
Kostopoulou, Sofia 3
Kretsis, Aristotelis 251
Kwiatkowski, Jan 84

L
Lama, M. 231
Lazovik, Elena 239
Ledwoń, Zbyszek 188
Lehman, Austin 35
Lenarduzzi, Valentina 19
Li, Xiaozhou 19
Lins, Sebastian 119

M
Makris, Antonios 188
Matskin, Mihhail 205
Montesi, Fabrizio 3
Moussa, Mohamad 219

N
Nanos, Anastassios 251
Nikolov, Nikolay 205

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
G. A. Papadopoulos et al. (Eds.): ESOCC 2023, LNCS 14183, pp. 289–290, 2023.
https://doi.org/10.1007/978-3-031-46235-1

https://doi.org/10.1007/978-3-031-46235-1

290 Author Index

P
Pateraki, Maria 188
Patsch, Richard 263
Prodan, Radu 205
Protopsaltis, Antonis 188
Psomakelis, Evangelos 188

Q
Quenum, José G. 136

R
Ramos-Soto, A. 231
Roman, Dumitru 205

S
Salazar, Jorge Yero 35
Samir, Areeg 153, 170
Schulte, Stefan 103

Soylu, Ahmet 205
Spătaru, Adrian 251
Sunyaev, Ali 119

T
Taibi, Davide 19, 35
Taweel, Adel 55, 70
Theodoropoulos, Theodoros 188
Tserpes, Konstantinos 188

V
Vidal, J. C. 231
Vistrup, Jonas 3

W
Wasielewski, Mariusz 84
Weber, Ingo 103

	 Preface
	 Organization
	 Contents
	Microservices
	XL: Explainable Lead Generation with Microservices and Hypothetical Answers
	1 Introduction
	2 Related Work
	3 HARP: Hypothetical Answer Reasoning Program
	3.1 Specification of Rules
	3.2 User-Defined Predicates (UDPs)
	3.3 HARP as a Microservice

	4 Architecture
	4.1 Application of Patterns for API Design

	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	One Microservice per Developer: Is This the Trend in OSS?
	1 Introduction
	2 Related Work
	3 The Empirical Study
	3.1 The Selected Projects
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

	End-to-End Test Coverage Metrics in Microservice Systems: An Automated Approach
	1 Introduction
	2 Related Work
	3 The E2E Test Coverage Metrics
	3.1 The Proposed Metrics Calculations
	3.2 The Metrics Extraction Process

	4 Case Study
	4.1 Proof of Concept Implementation
	4.2 Benchmark and Test Suites
	4.3 Ground Truth
	4.4 Case Study Results

	5 Discussion
	5.1 Threats to Validity

	6 Conclusion
	References

	Quality of Service
	Time-Aware QoS Web Service Selection Using Collaborative Filtering: A Literature Review
	1 Introduction
	2 Related Work
	3 Time-Aware Collaborative Filtering (CF) Methods: Review
	3.1 Time-Aware Neighbourhood Collaborative Filtering
	3.2 Time-Aware Model-Based Collaborative Filtering
	3.3 Time-Aware Hybrid Collaborative Filtering Methods

	4 Research Challenges and Directions
	5 Conclusion
	References

	Enhanced Time-Aware Collaborative Filtering for QoS Web Service Prediction
	1 Introduction
	2 Related Work
	3 Proposed ETACF Method
	3.1 Notations and Definitions
	3.2 QoS Model Description

	4 Evaluation and Results
	4.1 Experiments Setup
	4.2 Evaluation Metrics
	4.3 Controlling Time Decay Function Weights
	4.4 Evaluating Performance of Proposed Method (ETACF) Using Decay Function
	4.5 Evaluating Impact of Time Slices
	4.6 Evaluating Impact of Users/Services Similarity

	5 Discussion and Conclusion
	References

	Comparison of Performance and Costs of CaaS and RDBaaS Services
	1 Introduction
	2 Related Work
	3 Goal and Motivation
	4 Experiment Planning
	4.1 Investigated Cloud Services
	4.2 On-Premise Reference Environment
	4.3 Benchmark Software
	4.4 Cost Estimation of Cloud Environments
	4.5 Cost Estimation of On-Premise Environment
	4.6 Experiment Scenario
	4.7 Hypotheses

	5 Analysis Procedure
	5.1 Occurrence of Normal Distribution in the Compared Samples
	5.2 Lack of Normal Distribution in the Compared Samples

	6 Experiment Execution
	7 Analysis
	8 Discussion
	9 Conclusions and Future Work
	References

	Service Orchestration
	Horizontal Scaling of Transaction-Creating Machines for Blockchains
	1 Introduction
	2 Related Work
	3 Approaches
	3.1 Approach 1
	3.2 Approach 2
	3.3 Approach 3
	3.4 Approach 4

	4 Evaluation
	4.1 Transaction Throughput
	4.2 Latency and Waiting Periods
	4.3 Performance of the Mining Node

	5 Discussion
	6 Conclusion
	References

	Uncovering Effective Roles and Tasks for Fog Systems
	1 Introduction
	2 Theoretical Background
	2.1 Fog Computing
	2.2 Related Research on Roles and Tasks in Fog Computing

	3 Research Approach
	3.1 Literature Search
	3.2 Literature Analyses

	4 Fog Node Tasks
	5 Fog System Roles
	5.1 Basic Fog System Roles
	5.2 Advanced Fog System Roles

	6 Discussion
	6.1 Principal Findings
	6.2 Implications for Research and Practice
	6.3 Limitations and Future Research
	6.4 Conclusion

	References

	Cooperative Virtual Machine Placement
	1 Introduction
	2 Coalition Structure for Virtual Machine Placement
	2.1 Automated Negotiation
	2.2 Optimal Coalition Structure

	3 Virtual Machine Placement
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Edge Computing
	A Multi-pronged Self-adaptive Controller for Analyzing Misconfigurations for Kubernetes Clusters and IoT Edge Devices
	1 Introduction
	2 Research Challenges
	3 The System Under Observation - A Healthcare Use-Case
	4 Self-adaptive Controller
	4.1 Phase 1: System Components Monitor
	4.2 Phase 2: Access Control Policy Management
	4.3 Phase 3: Misconfiguration Detection

	5 Evaluations
	5.1 Detection Evaluation
	5.2 Rule-Based Access Control Performance Evaluation

	6 Related Work
	7 Conclusions and Future Work
	References

	Adaptive Controller to Identify Misconfigurations and Optimize the Performance of Kubernetes Clusters and IoT Edge Devices
	1 Introduction
	2 Background
	2.1 Configurations
	2.2 Hidden Markov Model

	3 Related Work
	4 Motivation Examples
	5 The Proposed Approach
	5.1 Methodology of Misconfigurations Analysis
	5.2 Configuration Error-Failure Cases
	5.3 Misconfiguration Identification Phase
	5.4 Threat Type Identification Under Misconfiguration

	6 Evaluations and Results Analysis
	6.1 Environment Settings Description
	6.2 Misconfiguration Scenarios
	6.3 Threat and Workload Scenarios
	6.4 Identification Assessment
	6.5 Misconfiguration Identification Accuracy Under Threats

	7 Conclusions and Future Work
	References

	Streamlining XR Application Deployment with a Localized Docker Registry at the Edge
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Kubernetes Dataset Lifecycle Framework
	3.2 Localized Docker Registry

	4 Use Cases
	4.1 Collaborative VR Medical Training
	4.2 Multiplayer Mobile Gaming

	5 Experimental Evaluation
	6 Discussion
	6.1 Semi-automated Deployment and Off-Loading
	6.2 Relation to Research Questions

	7 Conclusion
	References

	PhD Symposium
	Towards Cloud Storage Tier Optimization with Rule-Based Classification
	1 Introduction
	2 Cloud Storage Cost
	2.1 Storage Cost
	2.2 Network Usage Cost
	2.3 Transaction Cost
	2.4 Data Retrieval
	2.5 Migration Cost

	3 Rule-Based Classification
	3.1 Solution Approach
	3.2 Evaluation

	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

	Industry Projects Track
	Towards a Decentralised Federated Learning Based Compute Continuum Framework
	1 Introduction
	2 Related Works
	2.1 E2C and Industrial Solutions
	2.2 Federated Learning vs Decentralised Federated Learning

	3 Towards a Decentralised Federated Learning Based Compute Continuum-Oriented Architecture
	3.1 E2E Architecture - Decentralised Federated Learning
	3.2 Limitations and Advantages

	4 Smart Grid Energy Use-Case
	4.1 Grid Edge Device (GED) Architecture and Components
	4.2 Meyrin Deployment

	5 Experimental Work and Cost Comparison
	6 Conclusion
	References

	Detecting Model Changes in Organisational Processes: A Cloud-Based Approach
	1 Introduction
	2 Distributed Architecture of the Algorithm
	3 Deployment and Delivery of the Distributed Algorithm
	4 Preliminary Conclusions and Future Work
	References

	Short Papers
	A Taxonomy for Workload Deployment Orchestration in the Edge-Cloud Continuum
	1 Introduction
	2 Taxonomy
	3 Related Work
	4 Use Cases
	4.1 Local Access to and Processing of Sensitive Data
	4.2 Varying Trust and Security Levels of Clouds
	4.3 Non-reliable Availability of Cloud and Edge Infrastructures

	5 Future Directions
	6 Conclusions
	References

	Intent-Based AI-Enhanced Service Orchestration for Application Deployment and Execution in the Cloud Continuum
	1 Introduction
	2 Related Work and Background Knowledge
	2.1 Intent-Based Service Orchestration
	2.2 Machine Learning and Data Mining Techniques

	3 Approach Followed
	3.1 Overview
	3.2 Abstraction Models

	4 Software Components and Background Mechanisms
	4.1 AI-Enhanced Service Orchestration
	4.2 Background Mechanisms

	5 Usage and Discussion
	5.1 Example of Usage
	5.2 Discussion

	6 Conclusion
	References

	Optimizing the Cost-Performance Ratio of FaaS Deployments
	1 Introduction
	2 Contribution
	3 Related Work
	4 Input Based Deployments
	5 Evaluation
	5.1 Image Resizing
	5.2 Text to Speech
	5.3 Face Detection

	6 Discussion
	6.1 Future Work
	6.2 Conclusion

	References

	The Microservice Dependency Matrix
	1 Introduction
	2 The Proposed Dependency Methodology
	2.1 Endpoint Dependency Matrix (EDM)
	2.2 Data Dependency Matrix (DDM)

	3 Case Study
	3.1 Prototype Implementation and Testbench
	3.2 Results

	4 Discussion
	5 Related Work
	6 Conclusion
	References

	Author Index

