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The 9th International Workshop on High-Order Finite Element and Isogeometric 

Methods (HOFEIM 2023) will be held in Larnaca, Cyprus from May 29 to June 1, 

2023. 

 

In the last decades p-, hp-FEMs and Isogeometric Analysis (based on splines, 

NURBS, and extensions) witnessed a rapid growth in their use for numerical 

simulation in many relevant areas, such as computational mechanics, fluid dynamics, 

electromagnetism and waves propagation. HOFEIM 2023 will be dedicated to the 

recent developments of these methods, bringing together researchers with interests in 

their mathematical foundations as well as in their applicability to engineering practice. 

The aim of the workshop is twofold: to update experienced researchers in the area, as 

well as to form young researchers interested in using these techniques in their research 

activities. 
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Message from the local organizers 
 
It is with great pleasure that we welcome all the delegates and accompanying persons to the 
9th International Conference on High Order Finite Element and Isogeometric Methods 
(HOFEIM 2023), Larnaca, Cyprus, May 29 – June 1, 2023. 

HOFEIM 2023 is devoted to Professor Ivo Babuška (1926-2023) for his seminal contributions 
to the field. The program includes 40 regular talks and 4 poster presentations. With 
approximately 44 registered participants from fourteen countries (Austria, Cyprus, Finland, 
France, Germany, Israel, Italy, Netherlands, Poalnd, Saudi Arabia, Spain, Switzeralnd, UK, and 
USA) the conference is truly an international event.  

We hope that HOFEIM2023 will promote scientific exchange, collaboration and interactions 
between participants.  
 

Christos Xenophontos and Georgios Georgiou  
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SUNDAY, MAY 28 

Registration 18:30 – 19:00 outside “Ballroom” 

Welcome Reception 19:00 – 20:30 at the pool area 

MONDAY, MAY 29 – All presentations will take place in the room Ballroom of the hotel 

08:15 – 09:15 Registration  

09:15 – 09:30 Welcome and Opening Remarks  

09:30 – 09:50 Leszek Demkowicz, Ivo Babuška tribute Chair 

Zohar 

Yosibash 
09:50 – 10:15 Leszek Demkowicz, Markus J. Melenk, Stefan 

Henneking, Jacob Badger, Full envelope DPG 

approximation for electromagnetic waveguides. 

stability and convergence analysis 

10:15 – 10:40 Coffee Break  

10:40 – 11:05 Witold Cecot, Marta Oleksy, Marek Klimczak. 

Multiscale FEM and DPG methodology for 

upscaling in solid mechanics 

Chair 

Markus Melenk 

11:05 – 11:30 Jacob Badger, Leszek Demkowicz, Scalable 

hp-adaptive DPG multigrid solver with 

applications in high-frequency wave 

propagation 

11:30 – 11:55 Judit Muñoz-Matute, Leszek Demkowicz, 

David Pardo, The DPG method as a time-

integration scheme for linear and non-linear 

transient PDEs 

11:55 – 12:20 Brendan Keith, Thomas Surowiec, The 

entropic finite element method 

12:20 – 14:20 Lunch  

14:20 – 14:45 Philipp Kopp, Ernst Rank Victor Calo, Stefan 

Kollmannsberger, Immersed space-time hp-

finite elements for temperature evolution in 

laser powder bed fusion 

Chair 

Alexander 

Düster 

14:45 – 15:20 Marco Zank, Space-time continuous Galerkin 

methods for the wave equation 

15:20 – 15:45 Paolo Bignardi, Andrea Moiola, A space–time 

continuous and coercive formulation for the 

wave equation 

15:45 – 16:10 Coffee Break  

16:10 – 16:35 Massimo Carraturo, Modeling, calibration, 

and validation of powder bed fusion process 

simulations using the finite cell method 

Chair 

Giancarlo 

Sangalli 

16:35 – 17:00 Lisa Hug, Stefan Kollmannsberger, Ernst Rank, 

Adaptive phase-field simulations with the 

parallel finite cell method 

17:00 – 17:25 Paul Houston, Matthew E. Hubbard, Thomas J. 

Radley, Oliver J. Sutton, Richard S.J. 

Widdowson, hp-version polytopic discontinuous 

Galerkin methods for radiation transport 

Problems 



17:25  17:50 Théophile Chaumont-Frelet, Axel Modave, A 

hybridizable discontinuous Galerkin method 

with characteristic variables for high-frequency 

wave propagation problems 

 

 

15:45 – 17:50 Poster Presentations* 

 –  Balázs Tóth, Alexander Düster, Adaptive radial basis function 

finite difference scheme for linear elasticity problems 

 

Christos Xenophontos, Sebastian Franz, Irene Sykopetritou, 

Mixed hp finite element method for singularly perturbed fourth 

order boundary value problems with two small parameters 

 

Hind Lamsikine, Otmane Souhar, Georgios C. Georgiou, The 

singular function boundary integral method for solving three-

dimensional Laplacian problems with conical vertex singularities 

 

Christos Xenophontos, Neofytos Neofytou, hp discontinuous 

Galerkin finite element methods for the approximation of 

singularly perturbed boundary value problems with two small 

parameters 

 
* Posters will be displayed in the afternoon of May 29 and remain throughout the conference. 

 

 

TUESDAY, MAY 30 – All presentations will take place in the room Ballroom  

09:00 – 09:25 Alessandro Reali, Isogeometric analysis: 

advances and applications with a special focus 

on dynamic problems 

Chair 

Ernst Rank 

09:25 – 09:50 Monica Montardini, Giancarlo Sangalli, 

Mattia Tani, Low-rank solver for isogeometric 

analysis 

09:50 – 10:15 Mattia Tani, Monica Montardini, Fast 

Poisson solvers for isogeometric analysis 

10:15 – 10:40 Coffee Break  

10:40 – 11:05 Gregor Gantner, Martin Vohralík, 

Inexpensive polynomial-degree-robust 

equilibrated flux a posteriori estimates for 

isogeometric analysis 

Chair 

Stefan 

Kollmannsberger 

11:05 – 11:30 Andrea Bressan, Anisotropic refinement with 

LR-splines 

11:30 – 11:55 Matthias Möller, IgANets: Physics-informed 

machine learning embedded into isogeometric 

analysis 

11:55 – 12:20 G. Loli, M. Montardini, G. Sangalli, M. Tani, 

Space-time IGA 



12:20 – 14:20 Lunch  

14:20 – 14:45 Christoph Schwab, Lehel Banjai, Markus 

Melenk, Exponential convergence of hp FEM 

for spectral fractional diffusion in polygons 

Chair 

Christos 

Xenophontos 

14:45 – 15:20 Markus Faustmann, Carlo Marcati, Jens 

Markus Melenk, Christoph Schwab, Weighted 

analytic regularity for the integral fractional 

Laplacian in polygons 

15:20 – 15:45 Markus Faustmann, Carlo Marcati, Jens M. 

Melenk, Christoph Schwab, Exponential 

convergence of hp-FEM for the integral 

fractional Laplacian 

15:45 – 16:10 Coffee Break  

16:10 – 16:35 Andreas Schröder, Paolo Di Stolfo, hp-finite 

elements with higher differentiability on 

meshes with hanging nodes 

Chair 

Alessandro Reali 

16:35 – 17:00 Cesare Bracco, Carlotta Giannelli, Mario 

Kapl, Rafael Vázquez, High order hierarchical 

spline methods on multi-patch geometries 

17:00 – 17:25 Alexander Düster, Wadhah Garhuom, 

Improving the robustness of the finite cell 

method for nonlinear problems of solid 

mechanics 

17:25 – 17:55 Maciej Paszyński, Deep neural networks for 

smooth approximation of physics with higher 

order and continuity basis functions 

20:30 –  Conference Dinner – Location: Elia Backyard  

 

WEDNESDAY, MAY 31 – All presentations will take place in the Ballroom  

09:00 – 09:25 Zohar Yosibash, Maxime Levy, Crack 

nucleation in a 1D heterogeneous bar: h- and 

p-FE approximation of a phase field model 

Chair 

Harri Hakula 

09:25 – 09:50 Nima Azizi, Wolfgang Dornisch, An effort to 

utilize high order exact geometrically defined 

Reissner-Mindlin spectral shell elements: 

Advantages and problems 

09:50 – 10:15 Norbert Heuer, Torsten Linß, Uniform 

convergence of an arbritrary order balanced 

FEM applied to a singularly perturbed shell 

problem 

10:15 – 10:40 Coffee Break  

10:40 – 11:05 Daniele Boffi, Model order reduction for 

parametric eigenvalue problems 

Chair 

Christoph 

Schwab 11:05 – 11:30 Lukasz Kaczmarczyk, Christophe-Alexandre 

Chalons-Mouriesse, Chris Pearce, A mixed finite 

element method for 3D in-elasticity problems at 

large strains with weakly imposed symmetry 



11:30 – 11:55 Alexey Chernov, Tung Le, On analytic and 

Gevrey class regularity for parametric elliptic 

eigenvalue problems 

11:55 – 12:20 Sascha Eisenträger, Wadhah Garhuom, Fabian 

Duvigneau, Stefan Löhnert, Alexander Düster, 

Dominik Schillinger, On a stabilization 

technique for fictitious domain methods based 

on an eigenvalue decomposition: Time-

dependent problems 

12:20 – 14:15 Lunch  

14:15 –  Wednesday afternoon EXCURSION – Tour 

and dinner in Limassol (Guided tour in 

Limassol and dinner at “Folia tou Drakou” 

tavern in Pentakomo) 

 

 

THURSDAY, JUNE 1 – All presentations will take place in the room Ballroom 

09:00 – 09:25 Harri Hakula, Conformal mappings, 

reciprocal error estimates, and Laplace-

Beltrami operator 

Chair 

Andreas 

Schröder 

09:25 – 09:50 Bernard Kapidani, Rafael Vázquez, Fast 

computation of electromagnetic wave 

propagation with spline differential forms 

09:50 – 10:15 Deepesh Toshniwal, Discrete de Rham 

complex of hierarchical spline differential forms 

in Rn 

10:15 – 10:40 Coffee Break  

10:40 – 11:05 Stefan Tyoler, Stefan Takacs, Efficient 

computation of a spline basis for adaptive 

multipatch discretizations 

Chair 

Leszek 

Demkowicz 

11:05 – 11:30 Dohyun Kim, Brendan Keith, DynAMO: 

Dynamic anticipatory mesh optimization with 

reinforcement learning 

11:30 – 11:55 Espen Sande, Michael Floater, Carla Manni, 

Hendrik Speleers, Best approximations of 

matrices and differential operators 

11:55 – 12:20 Erik Burman, Guillaume Delay, Alexandre 

Ern, The unique continuation problem for the 

heat equation discretized with a high-order 

space-time nonconforming method 

12:20 – 12:30 END OF CONFERENCE  
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Full Envelope DPG Approximation for Electromagnetic Waveguides.
Stability and Convergence Analysis

Leszek Demkowicz1, Markus J. Melenk2, Stefan Henneking1 and Jacob Badger1

1 Oden Institute
University of Texas at Austin, Austin, TX 78712, USA

leszek@oden.utexas.edu, stefan@oden.utexas.edu, jcbadger@utexas.edu,
https://users.oden.utexas.edu

2 Institut für Analysis und Scientific Computing
E101, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

melenk@tuwien.ac.at,https://www.asc.tuwien.ac.at/ melenk

Key Words: DPG, Full envelope, stability

The presented work started with a convergence and stability analysis for the so-called full en-
velope approximation used in analyzing optical amplifiers (lasers). The specific problem of
interest was the simulation of Transverse Mode Instabilities (TMI) [1]. The problem translates
into the solution of a system of two nonlinear time-harmonic Maxwell equations coupled with
a transient heat equation. Simulation of a 1 m long fiber involves the resolution of 10 M wave-
lenghts. A superefficient MPI/openMP hp FE code run on a supercomputer gets you to the
range of ten thousand wavelenghts. The resolution of the additional thousand wavelenghths
is done using an exponential ansatz eikz in the z-coordinate. This results in a non-standard
Maxwell problem.

The stability and convergence analysis for the problem has been restricted to the linear case
only [3, 2]. It turns out that the modified Maxwell problem is stable if and only if the original
waveguide problem is stable and the boundedness below stability constants are identical. We
have converged to the task of determining the boundedness below constant.

The stability analysis started with an easier, acoustic waveguide problem. Separation of vari-
ables leads to an eigenproblem for a self-adjoint operator in the transverse plane (in x, y).
Expansion of the solution in terms of the corresponding eigenvectors leads then to a decou-
pled system of ODEs, and a stability analysis for a two-point BVP for an ODE parametrized
with the corresponding eigenvalues. The L2-orthogonality of the eigenmodes and the stability
result for a single mode, lead then to the final result: the boundedness below constant depends
inversely linearly upon the length L of the waveguide.

The corresponding stability for the Maxwell waveguide turned out to be unexpectedly diffi-
cult. The equation is vector-valued so a direct separation of variables is out to begin with. An
exponential ansatz in z leads to a non-standard eigenproblem involving an operator that is non-
self adjoint even for the easiest, homogeneous case. The answer to the problem came from a
tricky analysis of the eigenproblem combined with the perturbation technique for perturbed



self-adjoint operators. The use of perturbation theory requires an assumption on the smallness
of perturbation of the dielectric constant (around a constant value) but with no additional as-
sumptions on its differentiability (discontinuities are allowed). In the end, the final result is
similar to that for the acoustic waveguide - the boundedness below constant depends inversely
linearly on L.

References

[1] S. Henneking, J. Grosek, and L. Demkowicz. Parallel simulations of high-power optical
fiber amplifiers. Lect. Notes Comput. Sci. Eng., 2022. accepted.

[2] M. Melenk, L. Demkowicz, S. Henneking, and J. Badger. Analysis of a non-homogeneous
EM waveguide problem. Technical report, Oden Institute, The University of Texas at
Austin, Austin, TX 78712, 2023. In preparation.

[3] M. Melenk, L. Demkowicz, S. Henneking, and J. Badger. Analysis of full envelope ap-
proximation of EM waveguide problems using DPG method. Technical report, The Uni-
versity of Texas at Austin, Austin, TX 78712, 2023. In preparation.
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Multiscale FEM and DPG methodology for upscaling in solid mechanics

Witold Cecot1, Marta Oleksy1, Marek Klimczak1

1 Chair for Computational Engineering
Cracow University of Technology, ul. Warszawska 24, 31-155, Cracow, Poland
witold.cecot@pk.edu.pl, marta.oleksy@pk.edu.pl, marek.klimczak@pk.edu.pl

Key Words: Upscaling, DPG, elastic-visco-plastic material

We present the Multiscale Finite Element Method (MsFEM) [3] enhanced for linear static and
eigen problems as well as quasi-static inelastic problems with highly oscillating material coef-
ficients and multi-field, higher-order FEM approximation stabilized by the DPG methodology.
The concept of MsFEM is based on coarse and fine discretization. The coarse, macro-scale
mesh discretizes the whole domain with a relatively small number of degrees of freedom, while
an auxiliary fine mesh, generated for each coarse element, captures the micro-scale details of
the material and is used for on-line computation of special (optimal) trial shape functions by
the solution of local boundary value problems in each coarse element.

We focus here on the elastic-visco-plastic deformations of solids. Thus, we deal with a time-
dependent problem for which also temporal upscaling is performed. Our enhancement uses
static condensation, previously examined for 2D problems [2], that transmits the construction
of the special trial functions exclusively to the coarse element interfaces. This way, both the ap-
proximation error and computational cost are reduced. Higher-order shape functions increase
the efficiency of calculations, and the DPG methodology [1] provides the discrete stability for
the mixed formulation due to constructed on-the-fly optimal test functions. Good accuracy and
convergence of the improved method will be illustrated by solutions of selected 3D linear and
nonlinear problems.

References

[1] L. Demkowicz and J. Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods.
Part I. The transport equation. Computer Methods in Applied Mechanics and Engineering,
(Vol. 199):1558–1572, 2010.

[2] Marta Oleksy, Witold Cecot, Waldemar Rachowicz, and Michal Nessel. An improved
Multiscale FEM for the free vibrations of heterogeneous solids. Computers & Mathemat-
ics with Applications, (Vol. 110):110–122, 2022.

[3] X. Wu T. Hou. A multiscale finite element method for elliptic problems in composite
materials and porous media. Journal of Computational Physics, (Vol. 134):169–189, 1997.
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Scalable hp-adaptive DPG multigrid solver with applications in
high-frequency wave propagation

Jacob Badger1, and Leszek Demkowicz1

1 Oden Institute for Computational Engineering and Sciences
The University of Texas at Austin, 201 E 24th St, Austin, TX 78712, USA,

jcbadger@utexas.edu, leszek@oden.utexas.edu

Key Words: hp-Adaptive Mesh Refinement, Multigrid, Wave Propagation

Scalable solution of time-harmonic high-frequency wave propagation problemsincluding
acoustic Helmholtz, elastic Helmholtz, and time-harmonic Maxwellremains a challenge in
mathematics and scientific computing. One difficulty is that classical discretization techniques
(e.g., Galerkin finite elements, finite difference, etc.) yield indefinite discrete systems that pre-
clude use of many scalable solution algorithms. Significant progress has been made to develop
specialized preconditioners for high-frequency wave propagation problems, but robust and
scalable solvers for general problems including non-homogenous media and complex geome-
tries remain elusive. An alternative approach is to use minimum residual discretizationsthat
yield definite discrete systemsand may be more amenable preconditioning.

This work details a scalable multigrid solver for high-frequency wave propagation problems
discretized with the discontinuous Petrov-Galerkin (DPG) finite element methodologya mini-
mum residual method. The DPG multigrid (DPG-MG) solver [2] additionally leverages mesh-
independent stability and a built-in error indicator to define a hierarchy of hp-adaptive meshes
on which multilevel preconditioning is performed. General unstructured meshes with elements
of all types, as well as isotropic and anisotropic hp-refinements, are supported.

We will first outline the scalable implementation of the DPG-MG solver. Efficacy of the solver
will then be demonstrated via a number of three-dimensional wave propagation problems,
including problems with more than 100 wavelengths, billions of degrees of freedom, non-
homogeneous media, and complex geometries (e.g. tokamak). Finally, the DPG-MG solver
employs a vertex-patch block smoother [1]; however, storing patch matrices can become pro-
hibitive on high-order meshes. We thus conclude with a discussion of strategies to mitigate
high-order patch storage, including use of mixed-precision and H-matrix compression.

References

[1] Douglas N Arnold, Richard S Falk, and Ragnar Winther. Multigrid in H (div) and H (curl).
Numerische Mathematik, 85(2):197–217, 2000.

[2] Socratis Petrides and Leszek Demkowicz. An adaptive multigrid solver for DPG methods
with applications in linear acoustics and electromagnetics. Comput. Math. with Appl.,
87:12–26, 2021.
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The DPG method as a time-integration scheme for linear and non-linear
transient PDEs

Judit Muñoz-Matute1,2, Leszek Demkowicz2, and David Pardo3,1,4

1 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
2 Oden Institute for Computational Engineering and Sciences,

The University of Texas at Austin, USA
3 The University of the Basque Country (UPV/EHU), Leioa, Spain
4 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Key Words: DPG method, Ultraweak formulation, Optimal test functions, Multistage method,
Exponential integrators, Semi-linear problems

The main idea of the Discontinuous Petrov-Galerkin (DPG) method [2] is to select optimal test
functions that realize the supremum in the inf-sup condition in order to guarantee discrete sta-
bility. Recently, we applied the DPG method only in the time variable in order to obtain stable
DPG-based time-marching schemes for linear PDEs [3, 4]. In this work, we first introduce the
method for transient linear problems, and then we explain how we employ this construction as
a baseline for constructing new multistage methods for nonlinear transient PDEs. We semidis-
cretize the PDE in space by a classical Bubnov-Galerkin method. Then, we approximate the
nonlinear term by a polynomial in time employing known values of the solution from previous
stages. Considering an ultraweak variational formulation of the linearized problem we com-
pute the optimal test functions analytically, which are exponential related functions. Finally,
we obtain a time-marching scheme that locally computes the solution in the element interiors
and performs post-processing for the trace variables. This variational construction allows to
develop a-posteriori error estimations [1] for designing (goal-oriented) adaptive strategies.
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[1] Judit Muñoz-Matute, Leszek Demkowicz, and David Pardo. Error representation of the
time-marching DPG scheme. Computer methods in applied mechanics and engineering,
391:114480, 2022.
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space with DPG time-marching scheme for the transient advection–reaction equation.
Computer Methods in Applied Mechanics and Engineering, 402:115471, 2022.
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The Entropic Finite Element Method

Brendan Keith1 and Thomas Surowiec2
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Key Words: High-order, pointwise positivity, structure-preserving discretization, Banach–Lie
group, variational inequality

One of the longest-standing challenges in finite element analysis is to develop a stable, high-
order Galerkin method that strictly enforces pointwise bound constraints. The entropic finite
element method (EFEM) is a nonlinear, structure-preserving method with these three prop-
erties. This talk will introduce EFEM and describe its capability for treating free-boundary
problems, enforcing discrete maximum principles, and designing scalable, mesh-independent
algorithms for inverse design problems.
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Immersed space-time hp-finite elements for temperature evolution in laser
powder bed fusion

Philipp Kopp1, Ernst Rank1,2, Victor Calo3 and Stefan Kollmannsberger1

1 Chair of Computational Modeling and Simulation
Technical University of Munich, Munich, Germany

philipp.kopp@tum.de

2 Institute for Advanced Study
Technical University of Munich, Munich, Germany

3Chair in Computational Geoscience & Applied Mathematics
School of Electrical Engineering, Computing & Mathematical Science,

Curtin University, Perth, Australia

Key Words: Laser powder bed fusion, part-scale simulation, space-time finite elements,
hp-refinement, finite cell method

Laser powder bed fusion (PBF-LB) is an additive manufacturing technology for directly print-
ing three-dimensional metal structures. During the printing process, metal powder is added
layer-by-layer, while being selectively melted by a high-power laser. Thermal simulations of
PBF-LB can help to automate and optimize the printing process at a low computational cost,
but even cheap thermal models based on classical time-stepping schemes and finite element
discretizations in space struggle with the extreme differences in spatial and temporal scales.

We present a space-time finite element approach with local hp-refinement in four dimensions
that can resolve the local characteristics of the temperature field also in time [1]. We use
the superposition concept of the multi-level hp-method to build four-dimensional hp-bases
using very simple algorithms and data structures [2]. Coarse elements marked for refinement
are overlayed by the sixteen smaller elements resulting from bisecting it in the three spatial
directions and in time. We subdivide the space-time problem into shorter time-slabs to obtain
a sequence of smaller problems with reasonable sizes that we refine towards the laser path.

We apply this approach to several PBF-LB examples with multiple layers of metal powder,
where we use the finite cell method to resolve the expanding domain and distinguish between
powder and solidified metal. The additional quadrature cost of the finite cell method is com-
parably low in our space-time method as the element duration of most immersed elements
is significantly longer compared to the fine elements around the laser spot. We discuss the
modeling error, the numerical accuracy, and the computational performance of our approach.

[1] P. Kopp, V. Calo, E. Rank, S. Kollmannsberger, Space-time hp-finite elements for heat
evolution in laser powder bed fusion additive manufacturing, Engineering with Computers,
38, 4879 – 4893 (2022). https://doi.org/10.1007/s00366-022-01719-1
[2] P. Kopp, E. Rank, V. Calo, S. Kollmannsberger, Efficient multi-level hp-finite elements in
arbitrary dimensions. Computer Methods in Applied Mechanics and Engineering, 401, 115575
(2022). https://doi.org/10.1016/j.cma.2022.115575

https://doi.org/10.1007/s00366-022-01719-1
https://doi.org/10.1016/j.cma.2022.115575
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Space-Time Continuous Galerkin Methods for the Wave Equation

Marco Zank1
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Key Words: Wave Equation, Space-Time, Continuous Galerkin, CFL Condition

For the discretisation of time-dependent partial differential equations, classical approaches are
explicit or implicit time-stepping schemes together with finite element methods in space. An
alternative approach is the usage of space-time methods, i.e., the temporal variable t is just
another spatial variable. Thus, the space-time domain Q is discretised, and the resulting global
linear system has to be solved at once.

In this talk, the model problem is the wave equation in second-order formulation. First, we re-
call a space-time variational formulation of the wave equation in H1(Q), applying integration
by parts for the temporal and spatial variables, see [2, 3]. Second, space-time discretisation
schemes, using piecewise polynomials, globally continuous ansatz and test functions, are con-
sidered. For a tensor-product approach, stability and related CFL conditions are discussed,
see [1, 2, 3, 4]. In the last part of the talk, numerical examples for a one-dimensional spatial
domain and a two-dimensional spatial domain are presented.
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Space–time (XT) methods discretise the full space–time domain of definition of initial–
boundary value problems (IBVP), contrary to the classical method of lines and Rothe’s
method. When the PDE to be approximated is the acoustic wave equation ∂2

t u − c2∆u = f ,
no stable XT variational formulation that accommodates general discrete spaces is available.

We use a Morawetz-multiplier technique (i.e. integration by parts with well-chosen test func-
tions, coming from scattering theory) to derive an XT variational formulation that is con-
tinuous and coercive (sign-definite) in a norm stronger than H1(Ω × (0, T )). This applies
to IBVPs for the wave equation with constant wavespeed c, impedance boundary conditions
∂tu+ θc ∂nu = g on the boundary of a star-shaped space domain, and, possibly, a star-shaped
Dirichlet scatterer. The continuity and the coercivity constants are simple explicit expressions
of the IBVP parameters. Lax–Milgram theorem and Céa lemma allow to discretise the pro-
posed variational formulation with any discrete space Vh ⊂ C1(Ω× (0, T )) in a stable way
and derive error bounds. We show some numerical experiments that confirm the theoretical
results.
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The extreme scale ranges in both space and time involved in powder bed fusion process (PBF)
of metals as well as the geometrical complexity of the parts produced by means of PBF tech-
nology call for flexible numerical approaches. Therefore, immersed boundary methods seem
to offer a valid alternative to the traditional mesh-conforming finite element method. A well
established immersed methodology is the so-called Finite Cell Method (FCM), which has al-
ready been applied successfully in several contexts, from structural analysis to biomedical ap-
plications since it allows to easily deal with complex shape components, otherwise non trivial
or even impossible to mesh in a conform manner.

In the present contribution, we present the application of FCM in the context of high-fidelity
thermal [1] and thermomechanical [2] analyses of PBF processes. The proposed numerical
scheme is first calibrated and then validated with respect to several experimental measure-
ments. The developed thermal model is then applied to investigate the influence of process-
induced material discontinuities on the melt pool morphology whereas the thermomechanical
analysis is used to predict residual stresses in the solidified material due to the rapid melting-
solidification cycle occurring in PBF processes.

The ability of FCM to capture complex geometries in an implicit manner allows a straightfor-
ward solution even when amorphous material discontinuities are present beneath the powder
layer due to process-induced defects (e.g., balling, keyhole porosity, lack-of-fusion defects)
thus providing a valuable tool to investigate the influence of such a kind of defects on the melt
pool morphology.
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The numerical simulation of crack propagation in the context of phase-field models is chal-
lenging for two main reasons. First, the regularization of the sharp crack is based on a length-
scale parameter that necessitates extremely fine meshes in the vicinity of the crack. Secondly,
a staggered solution scheme based on decoupling of the phase-field and mechanical equation
is typically used which suffers from slow convergence.

To reduce the computational effort and enable the solution of large-scale problems, we present
a numerical framework based on a combination of a phase-field model for brittle fracture
with the Finite Cell Method (FCM), multi-level hp-refinement, and parallel computing. In-
tegrating the FCM [1] as an embedded domain approach enables the efficient simulation of
complex geometries without the need to generate boundary-conforming meshes. Multi-level
hp-refinement allows for a locally refined mesh that dynamically adapts to the crack path. As
presented in [3], implementing the two discretization techniques in an MPI-parallel setting
enables the efficient numerical solution of complex geometrical and physical problems.

In the present contribution, we extend the parallel framework to the simulation of crack prop-
agation by combining it with a phase-field model for brittle fracture [2]. The potential of the
proposed numerical framework will be investigated based on several 3-dimensional practical
examples.
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In this talk we develop hp–version discontinuous Galerkin finite element methods (DGFEMs)
for the discretization of the radiation transport problem on general (spatial) computational
meshes consisting of polygonal/polyhedral (polytopic) elements. Our particular interest is the
application to medical treatment planning in clinical radiotherapy. Here we study both the
stability and a priori error analysis of the proposed scheme. The implementation is based on
exploiting a nodal approximation in energy and angle, together with fast numerical integra-
tion techniques on the spatial polytopic mesh; this approach leads to a highly parallelisable
algorithm whereby a large number of linear transport solves must be computed. Numerical
experiments are presented to highlight the accuracy of the proposed method, as well as to
benchmark with more standard kinetic Monte Carlo simulations.
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I will present a new hybridization procedure for discontinuous Galerkin (DG) discretizations of
high-frequency Helmholtz problems. In contrast to standard hybrizable discontinuous Galerkin
(HDG) schemes that employ a Dirichlet trace as a Lagrange multiplier [3], this new approach
called CHDG utilizes characteristic variables [7].

Although DG, HDG and CHDG produce exactly the same numerical solution, the new choice
of auxiliary unknown changes the properties of the reduced system, which exhibit a structure
similar to optimized Schwartz domain decomposition methods (see e.g. [2, 4]) and ultra weak
Trefftz formulations (see [1, 5, 6], for instance). In particular, I will show that a simple fixed
point iteration always converges to solve the CHDG reduced linear system, which is not the
case of for standard DG and HDG schemes.

I will also numerically compare different iterative procedures including fixed point, GMRES
and CGN iterations on increasingly complex benchmarks. We will see that on all the consid-
ered test cases, the number of iterations is reduced for CHDG as compared to DG and HDG,
often by a large amount. Interestingly, the CGN iteration (which is often disregarded) con-
verges as fast as the GMRES iteration without restart for the CHDG system.
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Isogeometric Analysis (IGA) is a successful simulation framework originally proposed by
T.J.R. Hughes et al., in 2005, with the aim of bridging Computational Mechanics and Com-
puter Aided Design. In addition to this, thanks to the high-regularity properties of its basis
functions, IGA has shown a better accuracy per degree-of-freedom and an enhanced robust-
ness with respect to standard finite elements in many applications - ranging from solids and
structures to fluids, as well as to different kinds of coupled problems - opening also the door for
the approximation in primal form of higher-order partial differential equations. In particular,
the above-mentioned higher-regularity properties of IGA make it particularly attractive for the
efficient and accurate simulation of structural dynamics and transient problems. In this lecture,
after a concise introduction on the basic concepts of isogeometric analysis and its potential
advantages, some IGA recent advances in the context of structural dynamics and transient
problems will be presented, along with an overview of interesting applications from different
fields of Engineering.
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Similarly to other numerical methods to solve PDEs, Isogeometric Analysis suffers from the
so-called curse of dimensionality, i.e. memory storage and computational effort grow expo-
nentially with respect to the problem’s dimension. In this talk we propose low-rank techniques
that can overcome those issues. A low-rank decomposition of the linear system matrix kernel
is combined with a new suited iterative solver. In particular, the non-tensor product coefficients
is approximated with the sum of few Kronecker-product functions, and thus the linear system
matrix results in the sum of few Kronecker-product matrices. This yields a small memory foot-
print and cost for matrix products. The techniques to approximate the linear system matrix in
low-rank format are already present in literature. The novelty of our work is the development
of a specialized iterative solver combined with a preconditioning strategy. Truncations and
compressions of the tensors are employed to keep the rank of the iterates low. The precondi-
tioner is based on the Fast Diagonalization method, applied in the isogeometric context in [1],
that is recast to be compatible to the chosen tensor format. Our goal is to compute the solution
of the problem in O(n) FLOPs, where n is the number of univariate degrees of freedom. We
also show some numerical experiments.
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Consider the Poisson problem on a d-dimensional cube. It is well-known that, if the problem is
discretized with linear finite elements on a uniform tensor product mesh, the resulting stiffness
matrix can be diagonalized using the Fast Fourier Transform. This fact can be exploited to
solve the linear system yielding O(N logN) complexity, where N represents the number of
degrees of freedom. Such approach is referred to as a fast Poisson solver.

In this talk, we show how to generalize this idea to the case of B-splines of arbitrary degree p.
The resulting algorithm solves the linear system with O((N + p) logN) complexity. This is
achieved by first splitting the spline space into an outlier-free subspace and a subspace with low
dimension. On the latter subspace, the eigenvectors of the problem are computed numerically.
On the former subspace, on the other hand, the eigenvectors are approximated using interpo-
lated sinusoidal functions. The resulting approximated eigendecomposition can be used as a
preconditioner for the linear system, yielding extremely fast convergence independently of N
and p.
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We consider isogeometric discretizations of the Poisson model problem, focusing on high
polynomial degrees and strong hierarchical refinements. We derive a posteriori error estimates
by equilibrated fluxes, i.e., vector-valued mapped piecewise polynomials lying in the H(div)
space which appropriately approximate the desired divergence constraint. Our estimates are
constant-free in the leading term, locally efficient, and robust with respect to the polynomial
degree. They are also robust with respect to the number of hanging nodes arising in adap-
tive mesh refinement employing hierarchical B-splines. Two partitions of unity are designed,
one with larger supports corresponding to the mapped splines, and one with small supports
corresponding to mapped piecewise affine polynomials. The equilibration is only performed
on the small supports, avoiding the higher computational price of equilibration on the large
supports or even a global system solve. Thus, the derived estimates are also as inexpensive as
possible. An abstract framework for such a setting, extending that of [1] and the references
therein, is developed. Its application to a specific situation only requests a verification of a few
clearly identified assumptions. Numerical experiments illustrate the theoretical developments,
cf. Figure 1. All the details are provided in [2].
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Figure 1: Effectivity indices (estimate/error) with an artificial refinement enforcing a high
number of hanging nodes, polynomial degrees p ∈ {1, . . . , 5}, multiplicities m ∈ {1, p},
equilibration polynomial degrees p̃ ∈ {p+ 1, p+ 2}.
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There are many techniques to achieve local refinement in the context of locally tensor
product polynomial spline spaces. Among them a minority allow for anisotropic refine-
ment for instance LR-splines [3] but without further assumptions the LR generating
set can be linearly dependent. I will describe a construction, based on [1] and [2] that
guarantees local linear independence of the generating set and a desired resolution.
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Many engineering problems of practical interest are modelled by systems of partial differen-
tial equations equipped with initial and boundary conditions and complemented by problem-
specific constitutive laws. For decades, numerical methods like the finite element method have
been the method of choice for computing approximate solutions to problems that cannot be
solved analytically. Starting with the seminal paper [5] on physics-informed neural networks
(PINNs), a new paradigm has entered the stage: learning the behavior of the problem instead
of discretizing it and solving the resulting systems of equations brute-force. Next to PINNs,
several alternative approaches like DeepONets [2] and Fourier neural networks [1] have been
proposed in recent years. Their ease of implementation and fast response time, once training is
completed, makes learning-based methods particularly attractive for engineering applications
as they offer the opportunity to explore many different designs without costly simulation.

In this talk we propose a novel approach – IgANets – to embed the physics-informed machine
learning paradigm into the framework of Isogeometric Analysis (IGA) to combine the best of
both worlds. IGA is an extension of the finite element method that integrates the simulation-
based analysis into the computer-aided geometric design pipeline. In short, the same math-
ematical formalism, namely (adaptive) B-splines or NURBS, that is used to model the ge-
ometry is adopted to represent the approximate solution, which is computed following the
same strategy as in classical finite elements. In contrast to classical PINNs [5], which predict
point-wise solution values to (initial-)boundary-value problems directly, our IgANets [4] learn
solutions in terms of their expansion coefficients relative to a given B-Spline or NURBS ba-
sis. This approach is furthermore used to encode the geometry and other problem parameters
such as boundary conditions and parameters of the constitutive laws and feed them into the
feed-forward neural network as inputs. Once trained, our IgANets make it possible to explorer
various designs from a family of similar problem configurations efficiently without the need
to perform a computationally expensive simulation for each new problem configuration.

Next to discussing the IgANets’ underlying concepts and presenting numerical results, we
will shed some light on the technical details of our C++ reference implementation in Torch.
In particular, we will discuss a hardware-optimized implementation of B-splines based on the
matrix form representation from [3] that is particularly suited for an efficient backpropagation
step. We contrast the computational costs of our approach with that of classical PINNs.
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High-degree and continuity splines (or NURBS, etc.) bring to isogeometric analysis (see [1])
high accuracy per degree-of-freedom but also pose significant challenges at the computational
level: using standard finite element routines, the computational cost grows too fast with respect
to the degree, making degree raising excessively expensive. This problem is even more relevant
in space-time isogeometric discretizations, that is, when adopting smooth spline discretization
in space and time. We proposed in [2] a class of solvers that exploits the tensor construction
of spline spaces and achieves high efficiency thanks to linear algebra tensor methods ([2]). I
will then discuss the use, advantages and disadvantages, of space-time isogeometric analysis
for parabolic equations and beyond.
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We report recent results from [2, 3] and [1]. For the spectral fractional diffusion operator Ls of
order 2s, s ∈ (0, 1), in bounded, curvilinear polygonal domains Ω ⊂ R2, we prove exponential
convergence of two classes of hp FE discretizations under the assumption of analytic data
(coefficients and source terms, without any boundary compatibility), in the natural fractional
Sobolev norm Hs(Ω). The first hp discretization is based on writing the solution as a co-normal
derivative of a 2 + 1-dimensional local, linear elliptic boundary value problem, going back to
Caffarelli, Sylvestre and Stinga. To this degenerate, local 2nd order divergence-form PDE
an hp-FE discretization with exponential convergence from [1] is applied. A diagonalization
in the extended variable reduces the numerical approximation of the inverse of the spectral
fractional diffusion operator to the numerical approximation of a system of local, decoupled,
second order reaction-diffusion equations in Ω.

Leveraging results on robust exponential convergence of hp-FEM for second order, linear re-
action diffusion boundary value problems in Ω, exponential convergence rates for solutions
u ∈ Hs(Ω) of Lsu = f follow. Key ingredient in this hp-FEM are boundary fitted meshes
with geometric mesh refinement towards ∂Ω.

The second discretization is based on exponentially convergent numerical sinc quadrature ap-
proximations of the Balakrishnan integral representation of L−s combined with hp-FE dis-
cretizations of a decoupled system of local, linear, singularly perturbed reaction-diffusion
equations in Ω. The present analysis for either approach extends to (polygonal subsets M̃ of)
analytic, compact 2-manifoldsM, parametrized by a global, analytic chart χ with polygonal
Euclidean parameter domain Ω ⊂ R2.



Numerical experiments with the code NGSOLVE of J. Schöberl (Vienna) [9, 10] for model
problems in nonconvex polygonal domains and with incompatible data confirm the theoretical
results.

Exponentially small bounds on Kolmogorov n-widths of solution sets for spectral fractional
diffusion in curvilinear polygons and for analytic source terms are deduced, which imply ex-
ponential convergence of MOR and RB approaches as in [4, 5].

Related work includes an hp-FE analysis of the integral fractional Laplacean [8, 7, 6] pre-
sented by J.M. Melenk and C. Marcati.
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Università di Pavia, I-27100 Pavia, Italy

carlo.marcati@unipv.it

3Seminar for Applied Mathematics
ETH Zurich, CH-8092 Zürich, Switzerland
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The solutions to the fractional Laplace problem are well-known to have low regularity in clas-
sical spaces, even when the domain and the right-hand side are smooth. In particular, the
solutions are smooth in the interior of the domain, but lose regularity at its boundary.

In this talk, I will consider the integral fractional Laplace problem in polygonal domains, with
analytic right-hand sides. In this case, the solutions have both corner and edge singularities.
By analyzing their regularity in corner- and edge-weighted Sobolev spaces, we are able to
recover analytic-type estimates [2]. The proof relies on the analysis of the (3-dimensional)
Caffarelli-Silvestre extension of the problem; the result also paves the way for the design of
exponentially convergent numerical schemes [1].
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For the Dirichlet problem of the integral fractional Laplacian in a polygon Ω and analytic
right-hand side, we show exponential convergence of the hp-FEM based on suitably designed
meshes, [2]. These meshes are geometrically refined towards the edges and corners of Ω. The
geometric refinement towards the edges results in anisotropic meshes away from corners. The
use of such anisotropic elements is crucial for the exponential convergence result. These mesh
design principles are the same ones as those for hp-FEM discretizations of the Dirichlet spec-
tral fractional Laplacian in polygons, for which [1] recently established exponential conver-
gence.

The hp-FEM convergence result relies on the recent [3], where weighted analytic regularity
of the solution is shown in a way that captures both the analyticity of the solution in Ω and
the singular behavior near the boundary. Near the boundary the solution has an anisotropic
behavior: near edges but away from the corners, the solution is smooth in tangential direction
and higher order derivatives in normal direction are singular at edges. At the corners, also
higher order tangential derivatives are singular. This behavior is captured in terms of weights
that are products of powers of the distances from edges and corners.
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The construction of basis functions is an important issue in the implementation of hp-finite
element methods. In these methods the mesh size h as well as the polynomial degree p are
adapted to the requirements of the (unknown) solution of the given problem. Due to their
simplicity, well-known approximation properties, and several advantages with respect to the
assembling process, tensor-product basis functions on quadrangles in 2D or hexahedrons in
3D are often used to construct such hp-basis functions, which are typically continuous as this
(C0-)differentiability property is needed in many conforming finite element discretizations.

In this talk the construction of hp-basis functions with higher Ck-differentiability is discussed.
The basis functions are based on tensor-products and are defined on paraxial d-dimensional
rectangular meshes with arbitrary hanging nodes and varying polynomial degree distributions.
Hermite shape functions are combined with Gegenbauer polynomials to ensure that the support
of the basis functions is independent of the prescribed differentiability. This, in particular,
enables an efficient recursive computation of the constraints coefficients in the application of
constrained approximation for hanging nodes [1]. It is emphasized that the approach allows for
differentiability properties which can locally vary on the finite element mesh. The applicability
of the approach is illustrated by several numerical examples.
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We propose an adaptive isogeometric method for the numerical approximation of (high order)
partial differential equations defined on multi-patch geometries. By focusing on C1 hierarchi-
cal spline constructions [1, 2], we will present a refinement algorithm with linear complexity
which guarantees the construction of suitably graded hierarchical meshes that fulfill the condi-
tion for linear independence of the hierarchical basis. A selection of numerical examples will
confirm the potential of the adaptive scheme on different multi-patch configurations.
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Fictitious domain methods are attractive discretization schemes since they facilitate the mesh-
ing process of problems with complicated geometry. The finite cell method (FCM) [3] rep-
resents a combination of the fictitious domain concept with high order finite elements. Due
to the fact that the Cartesian meshes used in the FCM do not conform to the geometry of
the underlying problem, several challenges are introduced deteriorating the robustness of the
FCM especially for nonlinear problems. We will present and discuss different approaches of
how to improve the robustness of the FCM. The influence of the numerical integration [1] and
different stabilization techniques [2] applied to cut cells will be addressed and investigated for
problems including large elastic and elastoplastic deformations.

Figure 1: Single pore of a foam, finite cell grid, and deformed configuration.
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The PINN [3] introduced approximation of solutions of PDEs by DNN, u(x) = DNN(x) =
Anσ (...σ(A1x+B1)...) + Bn, where Ai are matrices, Bi bias vectors of DNN layers. To
train the DNN a solution of PDE, the loss functions consider the residual of a PDE, e.g.,
LOSSPDE(x) = (−ϵd

2DNN(x)(x)
dx2 + dDNN(x)(x)

dx
−1.0)2, and b.c. LOSSBC0(0) = (−ϵdDNN(0)

dx
+

DNN(0) − 1.0)2, LOSSBC1(1) = (DNN(1))2. The training involves probing the loss at
random points. The VPINN [2] introduces the weak PDE residuals, e.g., LOSSweak(v) =(∫ 1

0

(
ϵdDNN(x)

dx
dv
dx

+ dDNN(x)
dx

v
)
dx+DNN(0)v(0)−

∫ 1

0
DNN(x)dx+ v(0)

)2

, and train-
ing involves probing with random test functions v. The DNN can also learn the solution of
parametric PDE ”at once”. This requires a redefinition of PINN/VPINN loss functions, e.g.,
LOSSPDE(x, ϵ) or LOSSweak(v, ϵ) and LOSSBC0(0, ϵ), and including random ϵ into the
training process. In this talk, we discuss introducing the higher-order and continuity B-splines
into this setup [1]. We consider approximating the solution of the parametric PDE with DNN.
Alternatively, we approximate the solution of the parametric PDE with a combination of B-
splines uh(x) =

∑
i=1,...,N uiBi,p(x). We train DNN the coefficients of the linear combination

ui(ϵ) = NNi(ϵ). We employ either PINN trained at points or VPINN trained with B-splines.
Research project partly supported by program ”Excellence initiative – research university”
for the University of Science and Technology.
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In an attempt to accurately predict crack nucleation in human long bones, the AT1 phase field
method (PFM) for heterogeneous elastic materials is considered following preliminary encour-
aging attempts [2, 3]. The AT1-PFM is investigated for a 1-D heterogeneous bar, formulated as
a constrained minimization of a coupled weak-problem and solved by h- and p-FEM. For ver-
ification purposes, we present explicit analytical solutions for a 1-D bar incorporating linear,
parabolic, and exponential E(x) and GIc(x) profiles [4].

We enforce the damage positivity in the weak formulation by penalization [1], and provide
optimal penalization coefficients depending on the discretization and material heterogeneity
for both h- and p-FEA. We also provide correction to the numerical values of GIc for the
heterogeneous material profiles.

Numerical examples are provided to demonstrate the convergence rates obtained by h- and
p-FEA.
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A curved non-isoparametric Reissner-Mindlin shell element is developed for analyzing shell
structures. To calculate the director vector accurately, similar to isogeometric analysis (IGA),
the geometry is defined by utilization of the non-uniform rational B-splines (NURBS) im-
ported directly from CAD files. Then, shape functions of the Legendre spectral element method
(SEM) are used to interpolate the displacements. Consequently, the shell director vector and
Jacobian of the transformation are calculated properly according to the presented formula-
tion. On the other hand, in the Legendre SEM combined with the Gauss-Lobatto-Legendre
quadrature, the integration points and the element nodes coincide. Thus, the calculation of
interpolated director vector at integration points is not necessary. This is the source of either
complexity or error in the calculation of proper local nodal systems in IGA shells [1]. Given
the condition number of the stiffness matrix in the developed method, super high-order ele-
ments can also be used. The validity and convergence rate of the method in small deformation
analysis are investigated and verified through various cases of h- and p-refinement in challeng-
ing obstacle course problems. On the other hand, the above-mentioned assumptions utilized
for interpolation of coordinates and displacements in the presented non-isoparametric element
is the source of a problem in large deformation analysis. The problem, which stems from the
rigid body rotation, is elaborated in more details both analytically and numerically and we will
explain our effort to overcome this issue which occurs in the contribution.
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We study a boundary value problem that describes the bending of an axisymmetrically loaded
thin shell. The thickness of the shell appears in the differential equation as a singular perturba-
tion parameter. As a consequence layers form and must be resolved by the numerical scheme.

We show that the energy norm naturally associated with the standard weak formulation fails
to capture the layers. Using an idea by Lin and Stynes [1], we devise an alternative variational
formulation whos induced norm (a so called “balanced norm”) is stronger. This is then discre-
tised using arbitrary order conforming FEM. We proof convergence on a layer-adapted mesh
that is robust with respect to the perturbation parameter.
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Reduced order methods are consolidated and effective tools for the numerical approximation
of parametric partial differential equations. The application of reduced models to eigenvalue
problems is well understood in some very particular cases [5, 6].

The aim of our investigation is to discuss more critical cases and to show how to deal with
cluster of eigenvalues, possibly leading to degenerate situations and crossings [3, 1, 2, 4].
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I present an extension of the mixed finite element for small strain elasticity [?, ?] to large strain
problems. The finite element formulation includes four independently approximated fields, i.e.
stresses, logarithm stretches, rotation vectors, and displacements. The first two are associated
with the conservation of linear momentum and conservation of angular momentum, respec-
tively. The other two fields are associated with the constitutive equation and the consistency
condition between displacements and deformation. The relationship between the rotation vec-
tors and rotation tensor is established by an exponential map. The stresses are approximated
in H(div) space, and the remaining three fields are in L2 space. This formulation creates a
very sparse system of equations that is simple to parallelise, thereby enabling highly-scalable
and robust solvers. The FE formulation is implemented in open-source software, MoFEM [?],
developed by the GCEC.

This FE technology enables us to tackle problems with nearly incompressible soft elasto-
plastic materials. Further, this new approach opens up the possibility of tackling robust prob-
lems in DD-driven approaches for large strains and multi-field formulations for computational
plasticity and efficient error estimators for p-adaptivity.
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We investigate a class of parametric elliptic eigenvalue problems where the coefficients (and
hence the solution) may depend on a parameter y.

−∇ · (a(x, y)∇u(x, y)) + b(x, y)u(x, y) = λ(y)c(x, y)u(x, y) (x, y) ∈ D × U,
u(x, y) = 0 (x, y) ∈ ∂D × U,

where the derivative operator ∇ acts in the physical variable x ∈ D, where D is a bounded
Lipschitz domain in Rd. The vector of parameters y = (y1, y2, . . . ) ∈ U has either finitely
many or countably many components. Understanding the regularity of the solution as a func-
tion of y is important for construction of efficient numerical approximation schemes. Several
approaches are available in the existing literature, e.g. the complex-analytic argument by An-
dreev and Schwab [1] and the real-variable argument by Gilbert et al. [2, 3]. The latter proof
strategy is more explicit, but, due to the nonlinear nature of the problem, leads to slightly sub-
optimal results. In this talk we close this gap and (as a by-product) extend the analysis to the
more general class of coefficients.
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Fictitious domain methods are widely used in computational mechanics to solve problems
involving complex geometries. However, when elements are poorly cut, ill-conditioning and
stability problems can arise, which can compromise the accuracy of numerical simulations.
In addition, in explicit dynamics a significant reduction in the critical time step size can be
caused, depending on the smallest volume fraction of a cut element. To address these chal-
lenges, an eigenvalue stabilization technique is developed [1], which not only improves the
condition number of the system matrices, but also increases the maximum time increment.
Hence, making it possible to analyze time-dependent problems with greater accuracy and ef-
ficiency. To this end, the proposed approach identifies mode shapes with little support in the
physical domain on an element level, which is easily achieved using the computed eigenvalues
of the elemental matrices [2, 3] adding a negligible numerical overhead. A stabilization term
is derived and added to both sides of the linear system of equations to ensure that the solution
is not modified. On the one hand, the system matrices—K and M—are stabilized and on the
other hand, the right-hand side of the system of equations, i.e., the external load vector, is ad-
justed by a force correction term. The performance of the proposed technique is demonstrated
through selected benchmark examples in a dynamic setting. Overall, this method provides a
robust and efficient approach for solving problems using fictitious domain methods, and has
potential applications in a wide range of engineering fields.
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The conjugate function method for computing conformal mappings in the plane, see [2], can
be extended to surfaces simply by replacing the standard Laplacian with the Laplace-Beltrami
operator. In the Figure 1 a grid on a hemisphere is shown. In the context of high-order FEM
the Laplace-Beltrami has previsously been discussed by Cantwell et al [1]. Remarkably, the

Figure 1: Schwarzian hemisphere. Each intersection of the gridlines is at right angles.

reciprocal error estimator is also equally valid on surfaces. Exponential convergence of the p-
version is demonstrated over a series of numerical experiments. The reciprocal error estimator
is compared with the standard auxiliary space error estimator.
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We present a new structure-preserving numerical method which exhibits high order conver-
gence and, contrarily to other high order geometric methods, does not rely on the geometric
realization of any dual mesh. We use B-spline based de Rham complexes to construct two exact
sequences of discrete differential forms: the primal sequence starts from the space of tensor-
product splines of degree p and at least C1 continuity. Similarly, the dual sequence starts from
the space of tensor-product splines of degree p− 1, which in the parametric domain coincides
with the last space of the primal sequence.

The differential operators (gradient, curl and divergence) are condensed in the exterior deriva-
tive operator, and due to the high continuity of splines they are well defined both for the primal
and the dual sequence. The method is completed with two sets of discrete Hodge-star opera-
tors, that relate the spaces of the two sequences, mapping the space of primal k-forms into the
space of dual (n− k)-forms, and vice versa. The discrete Hodge-star operators encapsulate all
the metric-dependent properties, including material properties, see [2].

We show a particular choice of the discrete Hodge-star operators inspired by [1] and how to
compute them through the fast inversion of Kronecker product matrices. We apply the method
to the solution of Maxwell equations [3], and show that it exhibits high order convergence
and energy conservation, with computational times much lower than for standard Galerkin
discretizations. We will also present preliminary results about the extension of the method to
multi-patch geometries.
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Finite element exterior calculus (FEEC) is a framework for designing stable and accurate fi-
nite element discretizations for a wide variety of systems of PDEs. The involved finite element
spaces are constructed using piecewise polynomial differential forms, and stability of the dis-
crete problems is established by preserving at the discrete level the geometric, topological,
algebraic and analytic structures that ensure well-posedness of the continuous problem. The
framework achieves this using methods from differential geometry, algebraic topology, ho-
mological algebra and functional analysis. In this talk I will discuss the use of smooth splines
within FEEC, they are the de facto standard for representing geometries of interest in engineer-
ing and offer superior accuracy in numerical simulations (per degree of freedom) compared to
classical finite elements. In particular, for the hierarchical B-spline complex of discrete differ-
ential forms [1] on a domain Ω ⊂ Rn, I will present sufficient and locally verifiable conditions
on the mesh refinement that guarantee the complex’s exactness [2].

Joint work with: Kendrick Shepherd (BYU) and Rafael Vazquez (EPFL)

Figure 1: Only the left and right refinements lead to exact hierarchical B-spline complexes; the
former is covered by the sufficient conditions from [2] and the latter by those from [1].
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In this talk, we propose a new approach for adaptive discretizations in Isogeometric Analysis.
In order to avoid the non local refinement of tensor product discretizations in 2D or higher
dimensions, we decompose the computational domain into multiple geometrically conforming
patches. On each of these patches, we set up individual tensor product discretizations. Since
we use different grid sizes on each patch we usually have non conforming but nested dis-
cretizations on the interfaces. The nesting property allows the coupling of local basis functions
in a H1 conforming way across interfaces. This also applies to T-junctions emerging from the
local refinements.

We further give some insight on the computation and formation of a spline basis using a classi-
cal and a more algebraic approach and the problems that come with each of these approaches.
Finally, we show some results by employing this method to a simple adaptive test problem,
utilizing patchwise refinement and a residual a posteriori error estimator.

Figure 1: adaptive mesh refinement of an L-shape domain.
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Adaptive mesh refinement (AMR) has been widely used in many problems, providing im-
proved solutions compared to uniform mesh refinement with a similar number of degrees of
freedom. However, applying AMR to time-dependent problems for each time step is computa-
tionally infeasible for simulations of meaningful size. One possible way to reduce the compu-
tational cost for the re-meshing step is performing re-meshing less frequently. However, as our
adaptive mesh is constructed based on the current solution, it may not reflect the solution fea-
tures in subsequent time steps. To overcome this challenge, we propose DynAMO, a dynamic
anticipatory mesh optimization approach that uses multi-agent reinforcement learning. In Dy-
nAMO, each agent is associated with a mesh element and can take actions such as refining,
de-refining, or doing nothing. By receiving rewards based on the next-regrid-time-step error
distribution during training, the agents learn the dynamics of the problem and error propaga-
tion behavior over a longer period of time. Unlike traditional adaptive mesh refinement, this
allows us to perform mesh optimization that reflects the solution features in future time steps.
We demonstrate the effectiveness of DynAMO on hyperbolic conservation laws such as the
advection equation and compressible Euler equations, showing that it can effectively capture
solution characteristics and anticipate error propagation dynamics.
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It is well known that if the singular values of a matrix are distinct, then its best rank-n ap-
proximation in the Frobenius norm is uniquely determined and given by the truncated singular
value decomposition. On the other hand, this uniqueness is in general not true for best rank-n
approximations in the spectral norm. In this talk we relate the problem of finding best rank-
n approximations in the spectral norm to Kolmogorov n-widths and corresponding optimal
spaces [1]. By providing new criteria for optimality of subspaces with respect to the n-width,
we describe a large family of best rank-n approximations to a given matrix. This results in
a variety of solutions to the best low-rank approximation problem and provides alternatives
to the truncated singular value decomposition. This variety can be exploited to obtain best
low-rank approximations with problem-oriented properties.

We further discuss the generalization of these results to compact operators in L2, and explain
how they can be used to both describe the out-performance of smooth spline approximations
of solutions to differential equations when compared to classical finite element methods [3],
and to solve the outlier-problem in isogeometric analysis [2].
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We discretize a unique continuation problem subject to the heat equation and present the as-
sociated numerical analysis. This unique continuation problem consists in reconstructing the
solution of the heat equation in a target space-time subdomain given its (noised) value in a
subset of the computational domain. Both initial and boundary data can be unknown.

This problem is ill-posed and does not have a standard stability estimate. Instead, we have a
conditional stability estimate, so that an a priori estimate on the solution is needed to bound
its norm in the target subdomain, see for instance [2].

The considered discretization method uses discontinuous high-order polynomials in space and
in time. The discrete equations are obtained by minimizing a Lagrangian functional. Moreover,
some stabilization terms are considered to regularize the ill-posed problem.

We get optimal a priori error bounds for a weak (residual) norm. The conditional stability
estimate of the continuous problem is then used to obtain a priori error bounds in energy
norm. These error bounds optimally account for the ill-posedness of the continuous problem.
The strategy used for the analysis has been introduced in [1] for the Laplace problem.

Some numerical experiments are presented to check the actual efficiency of the method.
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In this research, the radial basis function finite difference method (RBF-FD) is further devel-
oped to solve one- and two-dimensional linear elasticity problems. The related differentiation
weights are computed by applying the supplemented version of the RBF with a polynomial
basis. The polyharmonic splines (PHS) are chosen for the type of the RBF, i.e., the combina-
tion of the odd m-order PHS φ(r) = rm with additional polynomial functions up to degree p
serves as the basis [1].

Within this concept, a new residual-based adaptive point-cloud refinement algorithm is pre-
sented and its computational performance is analyzed. The numerical efficiency of the PHS
RBF-FD scheme is tested by the use of the relative errors measured in `2-norm on some rep-
resentative benchmark problems. The examples range from problems with smooth and non-
smooth solutions, applying the newly developed h-adaptive point-cloud refinement strategy
[2].
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We consider fourth order singularly perturbed boundary value problems with two small param-
eters, and the approximation of their solution by the hp version of the finite element method
on the spectral boundary layer mesh from Melenk et al. We use a mixed formulation requiring
only C0 basis functions in two-dimensional smooth domains. Under the assumption of analytic
data, we show that the method converges uniformly, with respect to both singular perturbation
parameters, at an exponential rate when the error is measured in the energy norm. Our theo-
retical findings are illustrated through numerical examples, including results using a stronger
(balanced) norm.
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The Singular Function Boundary Integral Method (SFBIM) [2, 3] is extended to solve three-
dimensional Laplacian problems with conical vertex singularities. The solution is approxi-
mated by the leading terms of the local asymptotic series in spherical coordinates [4]. In or-
der to calculate the unknown singular coefficients, i.e., the vertex stress intensity factors, the
Laplacian problem is discretized by applying Galerkin’s principle. The governing equation is
weighted by the local functions over the domain and the volume integrals are then reduced
to surface ones by means of Green’s second identity. Given that the local solution satisfies
identically the boundary conditions over the conical surface causing the vertex singularity, the
dimension of the problem is reduced by one and the boundary integrals need to be calculated
only far from the vertex singularity, which yields a considerable reduction of the computational
cost. Neumann boundary conditions are weakly imposed and Dirichlet conditions are applied
by means of Lagrange multiplier functions [2, 3]. The latter are approximated by means of
finite elements over the corresponding boundary parts and the corresponding nodal values are
thus additional unknowns. The method is applied to a test problem considered by Zaltzman
and Yosibash [4]. As in previous studies with edge singularities [1], the method exhibits fast
convergence and yields accurate estimates of the vertex stress intensity factors. The application
of the method to other problems as well as its limitations are also discussed.
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We consider second order singularly perturbed boundary value problems with two small pa-
rameters, in one and two dimensions and we aim to describe an hp version of the finite element
method using the Discontinuous Galerkin method. More specifically, we will solve those prob-
lems using the so-called Spectral Boundary Layer mesh, to achieve exponential convergence.
Finally, our theoretical findings are illustrated through numerical examples.
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